scholarly journals Real-Time Cloud Visual Simultaneous Localization and Mapping for Indoor Service Robots

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 16816-16829
Author(s):  
Yali Zheng ◽  
Shinan Chen ◽  
Hong Cheng
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2106
Author(s):  
Ahmed Afifi ◽  
Chisato Takada ◽  
Yuichiro Yoshimura ◽  
Toshiya Nakaguchi

Minimally invasive surgery is widely used because of its tremendous benefits to the patient. However, there are some challenges that surgeons face in this type of surgery, the most important of which is the narrow field of view. Therefore, we propose an approach to expand the field of view for minimally invasive surgery to enhance surgeons’ experience. It combines multiple views in real-time to produce a dynamic expanded view. The proposed approach extends the monocular Oriented features from an accelerated segment test and Rotated Binary robust independent elementary features—Simultaneous Localization And Mapping (ORB-SLAM) to work with a multi-camera setup. The ORB-SLAM’s three parallel threads, namely tracking, mapping and loop closing, are performed for each camera and new threads are added to calculate the relative cameras’ pose and to construct the expanded view. A new algorithm for estimating the optimal inter-camera correspondence matrix from a set of corresponding 3D map points is presented. This optimal transformation is then used to produce the final view. The proposed approach was evaluated using both human models and in vivo data. The evaluation results of the proposed correspondence matrix estimation algorithm prove its ability to reduce the error and to produce an accurate transformation. The results also show that when other approaches fail, the proposed approach can produce an expanded view. In this work, a real-time dynamic field-of-view expansion approach that can work in all situations regardless of images’ overlap is proposed. It outperforms the previous approaches and can also work at 21 fps.


Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.


2019 ◽  
Vol 9 (16) ◽  
pp. 3264 ◽  
Author(s):  
Xujie Kang ◽  
Jing Li ◽  
Xiangtao Fan ◽  
Wenhui Wan

In recent years, low-cost and lightweight RGB and depth (RGB-D) sensors, such as Microsoft Kinect, have made available rich image and depth data, making them very popular in the field of simultaneous localization and mapping (SLAM), which has been increasingly used in robotics, self-driving vehicles, and augmented reality. The RGB-D SLAM constructs 3D environmental models of natural landscapes while simultaneously estimating camera poses. However, in highly variable illumination and motion blur environments, long-distance tracking can result in large cumulative errors and scale shifts. To address this problem in actual applications, in this study, we propose a novel multithreaded RGB-D SLAM framework that incorporates a highly accurate prior terrestrial Light Detection and Ranging (LiDAR) point cloud, which can mitigate cumulative errors and improve the system’s robustness in large-scale and challenging scenarios. First, we employed deep learning to achieve system automatic initialization and motion recovery when tracking is lost. Next, we used terrestrial LiDAR point cloud to obtain prior data of the landscape, and then we applied the point-to-surface inductively coupled plasma (ICP) iterative algorithm to realize accurate camera pose control from the previously obtained LiDAR point cloud data, and finally expanded its control range in the local map construction. Furthermore, an innovative double window segment-based map optimization method is proposed to ensure consistency, better real-time performance, and high accuracy of map construction. The proposed method was tested for long-distance tracking and closed-loop in two different large indoor scenarios. The experimental results indicated that the standard deviation of the 3D map construction is 10 cm in a mapping distance of 100 m, compared with the LiDAR ground truth. Further, the relative cumulative error of the camera in closed-loop experiments is 0.09%, which is twice less than that of the typical SLAM algorithm (3.4%). Therefore, the proposed method was demonstrated to be more robust than the ORB-SLAM2 algorithm in complex indoor environments.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988142090544
Author(s):  
Peiyu Guan ◽  
Zhiqiang Cao ◽  
Erkui Chen ◽  
Shuang Liang ◽  
Min Tan ◽  
...  

Visual simultaneously localization and mapping (SLAM) is important for self-localization and environment perception of service robots, where semantic SLAM can provide a more accurate localization result and a map with abundant semantic information. In this article, we propose a real-time PO-SLAM approach with the combination of both point and object measurements. With point–point association in ORB-SLAM2, we also consider point–object association based on object segmentation and object–object association, where the object segmentation is employed by combining object detection with depth histogram. Also, besides the constraint of feature points belonging to an object, a semantic constraint of relative position invariance among objects is introduced. Accordingly, two semantic loss functions with point and object information are designed and added to the bundle adjustment optimization. The effectiveness of the proposed approach is verified by experiments.


2017 ◽  
Vol 153 ◽  
pp. 01005
Author(s):  
Felix Hautot ◽  
Philippe Dubart ◽  
Charles-Olivier Bacri ◽  
Benjamin Chagneau ◽  
Roger Abou-Khalil

Sign in / Sign up

Export Citation Format

Share Document