scholarly journals Least Square Saliency Transformation of Capsule Endoscopy Images for PDF Model Based Multiple Gastrointestinal Disease Classification

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 58509-58521 ◽  
Author(s):  
Amit Kumar Kundu ◽  
Shaikh Anowarul Fattah ◽  
Khan A. Wahid
1998 ◽  
Vol 37 (12) ◽  
pp. 335-342 ◽  
Author(s):  
Jacek Czeczot

This paper deals with the minimal-cost control of the modified activated sludge process with varying level of wastewater in the aerator tank. The model-based adaptive controller of the effluent substrate concentration, basing on the substrate consumption rate and manipulating the effluent flow rate outcoming from the aerator tank, is proposed and its performance is compared with conventional PI controller and open loop behavior. Since the substrate consumption rate is not measurable on-line, the estimation procedure on the basis of the least-square method is suggested. Finally, it is proved that cooperation of the DO concentration controller with the adaptive controller of the effluent substrate concentration allows the process to be operated at minimum costs (low consumption of aeration energy).


2014 ◽  
Vol 687-691 ◽  
pp. 1373-1376 ◽  
Author(s):  
Lei Zhang ◽  
Li Li Liu ◽  
Chuan Hui Huang ◽  
Xing Hua Lu ◽  
Gen Sun

To address the fitting spherical surface and evaluating sphericity error, a mathematical model based on the minimum zone principle is presented. And the presented model is answered by GA. An example shows the performance of the proposed method by comparison with the methods based on the least square principle.


Author(s):  
Kamran Mohseni

Gastrointestinal (GI) disease affects millions of people worldwide and costs billions of dollars annually. Because the symptoms of GI diseases are often vague, physicians are often presented with gastrointestinal disease in advanced stages. Because conventional endoscopes often cannot reach all the way through the 20-foot small bowel, exploratory surgery previously was necessary to enable physicians to complete their diagnosis.


Author(s):  
Kenyu Uehara ◽  
Takashi Saito

Abstract We have modeled dynamics of EEG with one degree of freedom nonlinear oscillator and examined the relationship between mental state of humans and model parameters simulating behavior of EEG. At the IMECE conference last year, Our analysis method identified model parameters sequentially so as to match the waveform of experimental EEG data of the alpha band using one second running window. Results of temporal variation of model parameters suggested that the mental condition such as degree of concentration could be directly observed from the dynamics of EEG signal. The method of identifying the model parameters in accordance with the EEG waveform is effective in examining the dynamics of EEG strictly, but it is not suitable for practical use because the analysis (parameter identification) takes a long time. Therefore, the purpose of this study is to test the proposed model-based analysis method for general application as a neurotechnology. The mathematical model used in neuroscience was improved for practical use, and the test was conducted with the cooperation of four subjects. model parameters were experimentally identified approximately every one second by using least square method. We solved a binary classification problem of model parameters using Support Vector Machine. Results show that our proposed model-based EEG analysis is able to discriminate concentration states in various tasks with an accuracy of over 80%.


2013 ◽  
Vol 16 (3) ◽  
pp. 649-670 ◽  
Author(s):  
Myrna V. Casillas Ponce ◽  
Luis E. Garza Castañón ◽  
Vicenç Puig Cayuela

In this paper, we propose a new approach for model-based leak detection and location in water distribution networks (WDN), which considers an extended time-horizon analysis of pressure sensitivities. Five different ways of using the leak sensitivity matrix to isolate the leaks are described and compared. The first method is based on the binarization approach. The second, third and fourth methods are based on the comparison of the measured pressure vectors with the leak sensitivity matrix using different metrics: correlation, angle between vectors and Euclidean distance, respectively. The fifth method is based on the least square optimization method. The performance of these methods is compared when applied to two academic small networks (Hanoi and Quebra) widely used in the literature. Finally, the three methods with better performance are applied to a district metering area of the Barcelona WDN using real data.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Duo-Qing Sun ◽  
Zhu-Mei Sun

This paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we prove that the control law of the generalized least square can become the characteristic model-based golden-section control law. Then, based on both the stability result of the generalized least-square control system and the stability theory of matrix polynomial, the asymptotic stability of the closed loop system for the characteristic model under the control of the golden-section control law is proved for minimum phase system.


Sign in / Sign up

Export Citation Format

Share Document