scholarly journals Fault Location of Strip Steel Surface Quality Defects on Hot-Rolling Production Line Based on Information Fusion of Historical Cases and Process Data

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 171240-171251
Author(s):  
Zhaoping Wang ◽  
Jian Wang ◽  
Sen Chen
Author(s):  
I. A. Pankovets ◽  
V. I. Voznaya ◽  
A. V. Vedeneev ◽  
M. N. Vereshchagin

Quality of long products surface is an important consumer property of it. In the process of measures elaboration aimed at the increase of long products surface quality, in particular of bars produced at the mill 370/150 of ОJSC “BMZ – managing company of holding “BMK”, studies were accomplished by metallographic laboratory. It was established that defects being revealed at the bars finishing, don’t relate to the quality of continuously casted billet (CCB), but formed in the process of deformation. Studies of the mechanism of surface defects formation on hot-rolled bar of rolling origin – deformation fissure and wrinkles were carried out. Results of numerical simulation of rolling in roughing group of stands at various temperature-deformation parameters presented. Regularities of formation of surface defects on the bar in the finished product were revealed. It was shown that the reason of the surface defects of rolling origin – deformation fissure and wrinkles was a high temperature gradient between the core and the surface of billet, originated from local overheating of surface in the angles zone of CCB resulted in nonuniformity of drawing out of different layers of the billet being deformed. To eliminate the defects, minimum possible temperature gradient between the surface and the core of a billet by controlled rolls cooling should be provided. By calculation, the maximum permissible temperature of the working surface of the rolls of the rough group of stands was established, and empirically the actual temperatures of the rolls with the current production technology, as well as the temperature of the rolls support bearings seats of the rolls were measured. The technical and technological possibilities for improving of rolling technology on a bar and wire mill in order to improve the surface quality of rolled bars were demonstrated. The existing technology was adjusted and new technological modes of rolling with controlled cooling of the rolls were established, which made it possible to significantly reduce the rejection of the finished product due to defects in rolling production. A device was proposed for the roughing group of stands, which enables to minimize the ingress of coolant onto the bar rolled.


2005 ◽  
Vol 45 (9) ◽  
pp. 1368-1370 ◽  
Author(s):  
Subhankar Das BAKSHI ◽  
Monojit DUTTA ◽  
Debashish BHATTACHARJEE

2019 ◽  
Vol 291 ◽  
pp. 63-71 ◽  
Author(s):  
Oleksandr H. Kurpe ◽  
Volodymyr V. Kukhar ◽  
Eduard S. Klimov ◽  
Andriy H. Prysiazhnyi

Тhere has been developed technology, and pilot batch of hot rolling coils (6×1500 mm, steel grade S355MC) has been produced using thermo-mechanical controlled process (TMCP) for the wide-strip rolling mill 1700. The integrated technology for TMCP coil production (steel grade S355MC) has been firstly developed for the rolling mill 1700 in accordance with EN 10149-2. Air cooling for coils to 450°C after coiling has been firstly used in the developed technology, which provides for decrease in air scale and improvement of surface quality for the customers. It is possible to manufacture rolled products up to 6×1500 mm (steel grade S355MC) in accordance with EN 10149-2 using the existing equipment without exceeding the existing process constraints during its operation and without upgrading. It is possible to further master the rolled products, which are manufactured according to the TMCP technology.


2011 ◽  
Vol 295-297 ◽  
pp. 2341-2344
Author(s):  
Ru Tao Zhong ◽  
Zhi Jun Huang ◽  
Yu Tao Wang

Focused on the question of laser welding break of hot rolling strip steel JZZ, The causings of defect of laser welding were studied experimentally with the Trumph TLF12000 fast-flow CO2 laser,. and the methods of avoiding the defect were porposed. The results showed that owing to the steel plate was thicker and big welding velocity, resulted in large depth/breadth ratio and high cooling velocity , the solidification crack occurred during welding process. When the method of laser welding with filling metal was used,the welding defect was avoided , the better performance index of weld as good as that of base metal is available.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hou Jingzhong ◽  
Xia Kewen ◽  
Yang Fan ◽  
Zu Baokai

Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP) optimized multiple kernel relevance vector machine (MKRVM), which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.


Sign in / Sign up

Export Citation Format

Share Document