scholarly journals Generalized Partially Information Coupled Polar Codes With Arbitrary Coupling Depth and Their Decoding Algorithms

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29253-29269
Author(s):  
Hyoungbae Ahn ◽  
Sang-Hyo Kim ◽  
Jong-Seon No
Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Yuhuan Wang ◽  
Jianguo Li ◽  
Neng Ye ◽  
Xiangyuan Bu

The parallel nature of the belief propagation (BP) decoding algorithm for polar codes opens up a real possibility of high throughput and low decoding latency during hardware implementation. To address the problem that the BP decoding algorithm introduces high-complexity non-linear operations in the iterative messages update process, this paper proposes to simplify these operations and develops two novel low complexity BP decoding algorithms, namely, exponential BP (Exp-BP) decoding algorithm and quantization function BP (QF-BP) decoding algorithm. The proposed algorithms simplify the compound hyperbolic tangent function by using probability distribution fitting techniques. Specifically, the Exp-BP algorithm simplifies two types of non-linear operations into single non-linear operation using the piece-wise exponential model function, which can approximate the hyperbolic tangent function in the updating formula. The QF-BP algorithm eliminates non-linear operations using the non-uniform quantization in the updating formula, which is effective in reducing computational complexity. According to the simulation results, the proposed algorithms can reduce the computational complexity up to 50% in each iteration with a loss of less than 0.1 dB compared with the BP decoding algorithm, which can facilitate the hardware implementation.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Yingxian Zhang ◽  
Xiaofei Pan ◽  
Kegang Pan ◽  
Zhan Ye ◽  
Chao Gong

We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive theerror-checking equationsgenerated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of theerror-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length.


2014 ◽  
Vol 52 (7) ◽  
pp. 192-203 ◽  
Author(s):  
Kai Niu ◽  
Kai Chen ◽  
Jiaru Lin ◽  
Q. Zhang

Author(s):  
Sunghoon Lee ◽  
Jooyoun Park ◽  
Il-Min Kim ◽  
Jun Heo

AbstractIn this research, we study soft-output decoding of polar codes. Two representative soft-output decoding algorithms are belief propagation (BP) and soft cancellation (SCAN). The BP algorithm has low latency but suffers from high computational complexity. On the other hand, the SCAN algorithm, which is proposed for reduced complexity of soft-output decoding, achieves good decoding performance but suffers from long latency. These two algorithms are suitable only for two extreme cases that need very low latency (but with high complexity) or very low complexity (but with high latency). However, many practical systems may need to work for the moderate cases (i.e., not too high latency and not too high complexity) rather than two extremes. To adapt to the various needs of the systems, we propose a very flexible soft-output decoding framework of polar codes. Depending on which system requirement is most crucial, the proposed scheme can adapt to the systems by controlling the level of parallelism. Numerical results demonstrate that the proposed scheme can effectively adapt to various system requirements by changing the level of parallelism.


Author(s):  
Bin Dai ◽  
Chen yu Gao ◽  
Zhiyuan Yan ◽  
Rongke Liu

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Takumi Murata ◽  
Hideki Ochiai

Successive cancellation list (SCL) decoding of polar codes is an effective approach that can significantly outperform the original successive cancellation (SC) decoding, provided that proper cyclic redundancy-check (CRC) codes are employed at the stage of candidate selection. Previous studies on CRC-assisted polar codes mostly focus on improvement of the decoding algorithms as well as their implementation, and little attention has been paid to the CRC code structure itself. For the CRC-concatenated polar codes with CRC code as their outer code, the use of longer CRC code leads to reduction of information rate, whereas the use of shorter CRC code may reduce the error detection probability, thus degrading the frame error rate (FER) performance. Therefore, CRC codes of proper length should be employed in order to optimize the FER performance for a given signal-to-noise ratio (SNR) per information bit. In this paper, we investigate the effect of CRC codes on the FER performance of polar codes with list decoding in terms of the CRC code length as well as its generator polynomials. Both the original nonsystematic and systematic polar codes are considered, and we also demonstrate that different behaviors of CRC codes should be observed depending on whether the inner polar code is systematic or not.


Sign in / Sign up

Export Citation Format

Share Document