scholarly journals Long-term measurement of PM2.5 mass concentration using an electrostatic particle concentrator-based quartz crystal microbalance integrated with carbon dioxide aerosol jets for PM sensing in remote areas

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Nhan Dinh Ngo ◽  
Jaesung Jang
1973 ◽  
Vol 51 (4) ◽  
pp. 701-710 ◽  
Author(s):  
Roger S. Smith

The long-term measurement of aerobic fungal respiration, both on an agar medium and on wood blocks, was possible using a gas-chromatographic technique for the detection of the carbon dioxide. This method was fully automated to analyze gas samples sequentially from eight or more growth chambers, after variable but determined time periods. It provided a precise quantitative measure of the respired carbon dioxide, presented both in the form of punched computer tape and normal printed teleprinter output. This apparatus worked continuously for several years without serious breakdown.The fungi Lentinus lepideus, Lenzites trabea, Poria monticola, and several strains of Coniophora puteana all showed a rhythm in their respiration which was not controlled by temperature or light. The magnitude and frequency of the rhythmical peaks in carbon dioxide production varied between fungi and, although there was considerable variation between different isolates of the same species, the separation of these species of fungi based on their different patterns of respiration was possible.


2015 ◽  
Vol 8 (12) ◽  
pp. 12887-12931
Author(s):  
B. Sarangi ◽  
S. G. Aggarwal ◽  
D. Sinha ◽  
P. K. Gupta

Abstract. In this work, we have used scanning mobility particle sizer (SMPS) and quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA), where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10 to 478 nm), i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm−3, which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm−3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm−3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an important factor to govern this trend. It is further observed that the CMD has good correlation with O3, SO2 and ambient RH, suggesting that possibly sulfate secondary materials have substantial contribution in particle effective density. This approach can be useful for real-time measurement of effective density of both laboratory generated and ambient aerosol particles, which is very important for studying the physico-chemical property of particles.


2004 ◽  
Vol 22 (10) ◽  
pp. 3347-3351 ◽  
Author(s):  
P. S. Pillai ◽  
K. Krishna Moorthy

Abstract. Simultaneous data on Aerosol Optical Depth (AOD) and size segregated, near-surface, aerosol mass concentration was obtained from a Multi wavelength Solar Radiometer (MWR) and Quartz Crystal Microbalance Impactor (QCM), respectively. These were used to examine the association between near-surface aerosol properties and columnar AOD. The spectral AODs were approximated to the Ångström relation τp=βλ-α, and the wavelength exponent α and turbidity coefficient β have been obtained. In general, α was found to be well associated with the relative abundance of accumulation mode aerosols (estimated from the simultaneous QCM data) while β followed the variations of the coarse mode aerosol mass concentration; the association being closer during periods of continental airmass.


2019 ◽  
Vol 137 ◽  
pp. 105445 ◽  
Author(s):  
Kamaljeet Kaur ◽  
Raziye Mohammadpour ◽  
Isabel C. Jaramillo ◽  
Hamidreza Ghandehari ◽  
Christopher Reilly ◽  
...  

1996 ◽  
Vol 202 (4) ◽  
pp. 337-338
Author(s):  
Maria Teresa Gomes ◽  
Armando C. Duarte ◽  
Jo�o P. Oliveira

Sign in / Sign up

Export Citation Format

Share Document