scholarly journals Power losses reduction of solar PV systems under partial shading conditions using re-allocation of PV module-fixed electrical connections

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rupendra Kumar Pachauri ◽  
Isha Kansal ◽  
Thanikanti Sudhakar Babu ◽  
Hassan Haes Alhelou
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


2017 ◽  
Vol 12 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Ahsan Sarwar Rana ◽  
Mashood Nasir ◽  
Hassan Abbas Khan
Keyword(s):  
Solar Pv ◽  

The electrical power generation from solar photo voltaic arrays increases by reducing partial shading effect due to the deposition of dust in modules, shadow of nearby buildings, cloud coverage leads to mismatching power losses. This paper gives the detailed analysis of modeling, simulation and performance analysis of different 4x4 size PV array topologies under different irradiance levels and to extract output power of panels maximum by reducing the mismatching power losses. For this analysis, a comparative study of six PV array topologies are Series, Parallel, Series-Parallel, Total-Cross-Tied, Bridge Linked and Honey-Comb are considered under various shading conditions such as one module shading, one string shading, zigzag type partial shading and total PV array partially shaded cases. The performance of above six topologies are compare with mismatching power losses and fill-factor. For designing and simulation of different PV array configurations/topologies in MaTLab/Simulink, the LG Electronics LG215P1W PV module parameters are used in all PV modules.


IJOSTHE ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 5
Author(s):  
Neha Singh ◽  
Prof. Govind Prasad Pandiya

Solar energy is one of the most used and readily available renewable energy sources among the other energy sources. The power generated by PV systems is dependent on solar irradiance and temperature parameters. In the literature, many researchers and studies are interested in estimating true maximum efficiency point for the PV systems. Due to that fact, MPPT applications and techniques become an important issue for PV systems under both uniform and non uniform conditions. Although, PV system under uniform environment has only one maxima point on P-V curve which is simple to estimate correctly by conventional MPPT techniques, it is not as simple as under non-uniform condition such as partial shading and mismatch effects. To overcome the drawbacks of the conventional MPPTs under non uniform condition, researchers has been investigated new soft computing MPPTs, PV array configurations, system architectures and topologies.


Author(s):  
zhang caixia ◽  
Honglie Shen ◽  
Jun Chen ◽  
Hua LI

Abstract Partial shading is very common in photovoltaic (PV) systems. The mismatch losses and hot-spot effects caused by partial shading can not only affect the output power of a solar system, but also can bring security and reliability problems. This paper centers on the silicon crystalline PV module technology subjected to operating conditions with some cells partially or fully shaded. A comparison of the electrical and hot-pot performance results for four different connection mode PV modules without shading and with partial or full shading is presented. Bypass diode of different modules would start up in the different conditions with increasing shading area. We found that the regular half-cell module degraded about 60% than its non-shaded power, which is about 30% less than the other three modules, when the short edges of these modules were shaded. The highest hot-spot temperature of the regular half-cell module was 75.5C, which is the lowest among the four modules before diode started up.


Author(s):  
Vishwesh Kamble ◽  
Milind Marathe

Photovoltaic systems are designed to feed either to grid or direct consumption. Due to global concerns, significant growth is being observed in Grid connected solar PV Plants. Since the PV module generates DC power, inverter is needed to interface it with grid. The power generated by a solar PV module depends on surrounding such as irradiance and temperature. This paper presents modelling of solar PV arrays connected to grid-connected plant incorporated with irradiance and temperature variation, to design simulator to study and analyse effect on output power of solar PV arrays with irradiance and temperature variation, also to estimate the output power generated by PV arrays. The mathematical model is designed implemented separately on simulator for each PV components connected in PV systems, which are PV cell, Module, sting, array and field of arrays. The results from simulation based on model are verified by the data collected from power plants and experiments done on solar PV cell.


In this paper, modeling and performance analysis of conventional configurations are Series-Parallel (SP), BridgeLinked (BL), Honey-Comb (HC), Total-Cross-Tied(TCT) and proposed hybrid configurations are SP-TCT, BL-TCT, HC-TCT, BL-HC and modified BL(MBL), modified HC(MHC), proposed optimal interconnection type configurations of a 5x5 size solar PV array under ten different partial shading cases it causes shading losses and compare the best configuration with respect to array power, number of interconnections or ties required between shaded modules in the array. The proposed optimal interconnection method reduces the number of ties required between modules and these ties are based on the position of number of shaded modules in the entire solar PV array. For the performance analysis of above 11 configurations, total ten shading cases are considered and compare the result with one un-shaded case-U of an irradiance 1000 W/m2 . The PV module parameters of Vikram Solar ELDORA 270 are used for modeling of above 11 conventional and proposed PV array configurations and simulate the models in MATLAB/ Simulink software.


Sign in / Sign up

Export Citation Format

Share Document