scholarly journals Design and Implementation of Asymmetrical Multilevel Inverter with Reduced Components and Low Voltage Stress

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Shaik Reddi Khasim ◽  
Dhanamjayulu C
Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3099
Author(s):  
Mohd Asif ◽  
Mohd Tariq ◽  
Adil Sarwar ◽  
Md Reyaz Hussan ◽  
Shafiq Ahmad ◽  
...  

Multilevel inverters (MLIs) are used on a large scale because they have low total harmonic distortion (THD) and low voltage stress across the switches, making them ideal for medium- and high-power applications. The authenticity of semiconductor devices is one of the main concerns for these MLIs to operate properly. Due to the large number of switches in multilevel inverters, the possibility of a fault also arises. Hence, a reliable five-level inverter topology with fault-tolerant ability has been proposed. The proposed topology can withstand an open-circuit (OC) fault caused when any single switch fails. In comparison to typical multilevel inverters, the proposed topology is fault-tolerant and reliable. The simulation of the proposed topology is conducted in MATLAB-Simulink and PLECS software packages, and the results obtained for normal pre-fault, during-fault, and after-fault conditions are discussed. Experimental results also prove the proposed cell topology’s robustness and effectiveness in tolerating OC faults across the switches. Furthermore, a thorough comparison is provided to demonstrate the proposed topology’s superiority compared to recently published topologies with fault-tolerant features.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1112
Author(s):  
Yu-En Wu ◽  
Jyun-Wei Wang

This study developed a novel, high-efficiency, high step-up DC–DC converter for photovoltaic (PV) systems. The converter can step-up the low output voltage of PV modules to the voltage level of the inverter and is used to feed into the grid. The converter can achieve a high step-up voltage through its architecture consisting of a three-winding coupled inductor common iron core on the low-voltage side and a half-wave voltage doubler circuit on the high-voltage side. The leakage inductance energy generated by the coupling inductor during the conversion process can be recovered by the capacitor on the low-voltage side to reduce the voltage surge on the power switch, which gives the power switch of the circuit a soft-switching effect. In addition, the half-wave voltage doubler circuit on the high-voltage side can recover the leakage inductance energy of the tertiary side and increase the output voltage. The advantages of the circuit are low loss, high efficiency, high conversion ratio, and low component voltage stress. Finally, a 500-W high step-up converter was experimentally tested to verify the feasibility and practicability of the proposed architecture. The results revealed that the highest efficiency of the circuit is 98%.


Author(s):  
Qiang Chen ◽  
Jianping Xu ◽  
Fei Zeng ◽  
Rui Huang ◽  
Lei Wang

2013 ◽  
Vol 344 ◽  
pp. 159-163
Author(s):  
Zhen Jun Lin ◽  
Sheng Hua Huang

Cascaded multilevel inverters could realize high-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic could achieve high-quality output voltage waveforms and input current waveforms. These merits are made for motor control, especially in the field of speed-sensorless vector control of induction motor based on the theory of MRAS. This paper constructs a simulation system with the help of MATLB/SIMULINK and a system combined cascaded H-bridge multilevel inverter with induction motor with the help of DSP and FPGA. The simulation and experiment results verified the superiority of cascaded multilevel inverter applied on the MRAS speed-sensorless vector control of induction motor.


2021 ◽  
Author(s):  
Saed Mahmoud Alilou ◽  
Mohammad Maalandish ◽  
Soheil Nouri ◽  
Seyed Hossein Hosseini

Sign in / Sign up

Export Citation Format

Share Document