scholarly journals Humanlike Decision and Motion Planning for Expressway Lane Changing Based on Artificial Potential Field

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Ping Wu ◽  
Feng Gao ◽  
Keqiang Li
2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091123
Author(s):  
Chaochun Yuan ◽  
Shuofeng Weng ◽  
Jie Shen ◽  
Long Chen ◽  
Youguo He ◽  
...  

In this article, an active collision avoidance based on improved artificial potential field is proposed to satisfy collision avoidance for intelligent vehicle. A longitudinal safety distance model based on analysis of braking process and a lane-changing safety spacing model based on minimum time of lane changing under the constraint of sideslip angle are presented. In addition, an improved artificial potential field method is introduced, which represents the influence of environmental information with artificial force. Simulation results demonstrate the superior performance of the proposed algorithm over collision avoidance for intelligent vehicle.


Robotica ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 1128-1150 ◽  
Author(s):  
Matin Macktoobian ◽  
Mahdi Aliyari Shoorehdeli

SUMMARYIn this paper, a novel scheme is presented to conquer the motion-planning problem for autonomous space robots. Minimizing the consumed energy of atomic batteries within the daily planetary missions of robot on the planet is taken into account, i.e., utilization of the generated solar power by its embedded photocells leads to saving energy of batteries for night missions. Aforementioned objective could be acquired by appropriate interaction of motion planning paradigm with shadows of obstacles. Modeling of the shadow with the proposed artificial potential field leads to generalize the concept of potential fields not only for static and dynamic obstacles but also for being confronted with the intrinsic time-variant phenomena such as shadows. With due attention to the noticeable computational complexity of the introduced strategy, fuzzy techniques are applied to optimize the sampling times effectively. To accomplish this objective, a smart control scheme based on the fuzzy logic is mounted to the primitive version of algorithm. Regarding the need to identify some structural parameters of obstacles, PIONEER™ mobile robot is designed as a test bed for the verification of simulated results. Investigation on empirical accomplishments shows that the goal-oriented definition of Time–Variant Artificial Potential Fields is able to resolve the motion-planning problem in planetary applications.


Author(s):  
L. Hilario ◽  
N. Montés ◽  
E Nadal ◽  
M.C. Mora ◽  
A. Falco ◽  
...  

A fundamental robotics task is to plan collision-free motions for complex bodies from a start to a goal position among a set of static and dynamic obstacles. This problem is well known in the literature as motion planning (or the piano mover's problem). The complexity of the problem has motivated many works in the field of robot path planning. One of the most popular algorithms is the Artificial Potential Field technique (APF). This method defines an artificial potential field in the configuration space (C-space) that produces a robot path from a start to a goal position. This technique is very fast for RT applications. However, the robot could be trapped in a deadlock (local minima of the potential function). The solution of this problem lies in the use of harmonic functions in the generation of the potential field, which satisfy the Laplace equation. Unfortunately, this technique requires a numerical simulation in a discrete mesh, making useless for RT applications. In our previous work, it was presented for the first time, the Proper Generalized Decomposition method to solve the motion planning problem. In that work, the PGD was designed just for static obstacles and computed as a vademecum for all Start and Goal combinations. This work demonstrates that the PGD could be a solution for the motion planning problem. However, in a realistic scenario, it is necessary to take into account more parameters like for instance, dynamic obstacles. The goal of the present paper is to introduce a diffusion term into the Laplace equation in order to take into account dynamic obstacles as an extra parameter. Both cases, isotropic and non-isotropic cases are into account in order to generalize the solution.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4199 ◽  
Author(s):  
Kai Gao ◽  
Di Yan ◽  
Fan Yang ◽  
Jin Xie ◽  
Li Liu ◽  
...  

Car-following is an essential trajectory control strategy for the autonomous vehicle, which not only improves traffic efficiency, but also reduces fuel consumption and emissions. However, the prediction of lane change intentions in adjacent lanes is problematic, and will significantly affect the car-following control of the autonomous vehicle, especially when the vehicle changing lanes is only a connected unintelligent vehicle without expensive and accurate sensors. Autonomous vehicles suffer from adjacent vehicles’ abrupt lane changes, which may reduce ride comfort and increase energy consumption, and even lead to a collision. A machine learning-based lane change intention prediction and real time autonomous vehicle controller is proposed to respond to this problem. First, an interval-based support vector machine is designed to predict the vehicles’ lane change intention utilizing limited low-level vehicle status through vehicle-to-vehicle communication. Then, a conditional artificial potential field method is used to design the car-following controller by incorporating the lane-change intentions of the vehicle. Experimental results reveal that the proposed method can estimate a vehicle’s lane change intention more accurately. The autonomous vehicle avoids collisions with a lane-changing connected unintelligent vehicle with reliable safety and favorable dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document