Study on 3D Data Mosaic Method of Point Cloud Data in Reverse Engineering

Author(s):  
Xiaobin Lin ◽  
Yingwu Zhou ◽  
Chen Lin
2013 ◽  
Vol 331 ◽  
pp. 631-635
Author(s):  
Ci Zhang ◽  
Guo Fan Hu ◽  
Xu Bing Chen

In reverse engineering, data pre-processing has played an increasingly important role for rebuilding the original 3D model. However, it is usually complex, time-consuming, and difficult to realize, as there are huge amounts of redundant 3D data existed in the gained point cloud. To find a solution for this issue, point cloud data processing and streamlining technologies are reviewed firstly. Secondly, a novel pre-processing approach is proposed in three steps: point cloud registration, regional 3D triangular mesh construction and point cloud filtering. And then, the projected hexagonal area and the closest projected point are defined. At last, a parabolic antenna model is employed as a case study. After pre-processing, the number of points are decreased from 4,066,282 to 449,806 under the constraint of triangular grid size h equaling to 2mm, i.e. about 1/9 size of the original point cloud. The result demonstrates its feasibility and efficiency.


2014 ◽  
Vol 697 ◽  
pp. 298-301
Author(s):  
Yong Qing Xia ◽  
Jie Zhang

Reverse engineering technology has been widely used in engineering design field. This paper proposed a CATIA-modeling-based reverse engineering technology for vehicle rear axle design. The general process for reverse engineering includes the pretreatment of the point cloud data, the establishment of the grid, the surface reconstruction of parts, the analysis of curved surface, and so on. Finally, the paper puted forward practical and feasible solution to the problem.


2020 ◽  
Vol 12 (9) ◽  
pp. 1063-1069
Author(s):  
Dehai Zhang ◽  
Junheng Li ◽  
Huimin Zhu ◽  
Shujun Liu ◽  
Kun Yu ◽  
...  

National handcrafts are well-known at home and Abroad for their fine ingredients, exquisite blending of colors, and excellent skilled shaping and painting. What is more, they have great value and are deeply popular with people around the world. National handcrafts, as a cultural crystallization, must be protected. In order to better realize the protection, we try to apply the technology of reverse engineering to the protection. This article mainly takes a handcraft, Yan Zi YU (meaning “swallow fish”), as an example to expound and demonstrate the process of reverse engineering technology. During this process, by using scanning technology of reverse engineering, the collection and splicing of the point cloud data, the theoretical analysis of the NURBS surface in the reconstruction phase, and other practical operations in other stages, reverse engineering can be used to regenerate 3D modal data of the swallow fish and to inspect and analyse the errors in it through Geomagic Quality to ensure that the new model meets the precision requirements. Therefore, the reverse engineering technology can be completely applied to the protection of national handcrafts so that they can fully demonstrate their own value and function. If the precision of reverse engineering detection can reach nanometric level, a breakthrough will promote the protection of cultural relics.


2012 ◽  
Vol 503-504 ◽  
pp. 215-218 ◽  
Author(s):  
Da Wei Wu ◽  
Xiao Fei Ding ◽  
Gang Tong

This paper analyzes the structure of molding tool for composite component, and proposes a method of surface design of molding tool based on reverse engineering. By using handy laser scanner, the point cloud data is obtained from the composite component, which is processed in Geomagic Studio. Then the processed data is imported into CATIA for Surface fitting. The surface of molding tool for composite component is rapidly and accurately designed by analyzing 3D error and comparing cross-sectional data.


2020 ◽  
Vol 12 (19) ◽  
pp. 8108
Author(s):  
Namhyuk Ham ◽  
Baek-Il Bae ◽  
Ok-Kyung Yuh

This study proposed a phased reverse engineering framework to construct cultural heritage archives using laser scanning and a building information model (BIM). This framework includes acquisition of point cloud data through laser scanning. Unlike previous studies, in this study, a standard for authoring BIM data was established through comparative analysis of existing archives and point cloud data, and a method of building valuable BIM data as an information model was proposed. From a short-term perspective, additional archives such as member lists and drawings can be extracted from BIM data built as an information model. In addition, from a long-term perspective, a scenario for using the cultural heritage archive consisting of historical records, point cloud data, and BIM data was presented. These scenarios were verified through a case study. In particular, through the BIM data building and management method, relatively very light BIM data (499 MB) could be built based on point cloud data (more than 917 MB), which is a large amount of data.


2013 ◽  
Vol 437 ◽  
pp. 941-944
Author(s):  
Chun Sheng Tao

The concept, processes and research status of reverse engineering are introduced. The application of reverse engineering technology on food packaging is illustrated by introducing the process of rebuilding a model for a biscuit box, including acquiring point cloud data of the biscuit box, processing data and materializing model. The results show that a high quality model of sample can be rebuild by reverser engineering. It is a effective method in innovation design on food packaging by reverser engineering technology.


Sign in / Sign up

Export Citation Format

Share Document