Three-Dimensional Path Tracking Control of the Underactuated AUV Based on Backstepping Sliding Mode

Author(s):  
Yushan Sun ◽  
Chenming Zhang ◽  
Hao Xu ◽  
Guocheng Zhang ◽  
Yuanqing Wang
2019 ◽  
Vol 7 (12) ◽  
pp. 443 ◽  
Author(s):  
Yushan Sun ◽  
Chenming Zhang ◽  
Guocheng Zhang ◽  
Hao Xu ◽  
Xiangrui Ran

In this paper, the three-dimensional (3D) path tracking control of an autonomous underwater vehicle (AUV) under the action of sea currents was researched. A novel reward function was proposed to improve learning ability and a disturbance observer was developed to observe the disturbance caused by currents. Based on existing models, the dynamic and kinematic models of the AUV were established. Deep Deterministic Policy Gradient, a deep reinforcement learning, was employed for designing the path tracking controller. Compared with the backstepping sliding mode controller, the controller proposed in this article showed excellent performance, at least in the particular study developed in this article. The improved reward function and the disturbance observer were also found to work well with improving path tracking performance.


Author(s):  
Tsung-Chih Lin ◽  
Yu-Chen Lin ◽  
Majid Moradi Zirkohi ◽  
Hsi-Chun Huang

In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.


2021 ◽  
Vol 37 (5) ◽  
pp. 891-899
Author(s):  
Bingli Zhang ◽  
Jin Cheng ◽  
Pingping Zheng ◽  
Aojia Li ◽  
Xiaoyu Cheng

HighlightsAutomatic navigation technology in autonomous tractors is one of the key technologies in precision agriculture.A path-tracking control algorithm based on lateral deviation and yaw rate feedback is proposed.The modified steering angle was obtained by comparing the ideal yaw rate with the actual yaw rate.The results demonstrate the efficiency and superior accuracy of the proposed algorithm for tractor path-tracking control.Abstract. The performance of path-tracking control systems for autonomous tractors affects the quality and efficiency of farmland operations. The objective of this study was to develop a path-tracking control algorithm based on lateral deviation and yaw rate feedback. The autonomous tractor path lateral dynamics model was developed based on preview theory and a two-degree-of-freedom tractor model. According to the established dynamic model, a path-tracking control algorithm using yaw angular velocity correction was designed, and the ideal steering angle was obtained by lateral deviation and sliding mode control. The modified steering angle was obtained by a proportional-integral-derivative feedback controller after comparing the ideal yaw rate with the actual yaw rate, which was then combined with the ideal steering angle to obtain the desired steering angle. The simulation and experimental results demonstrate the efficiency and superior accuracy of the proposed tractor path-tracking control algorithm, enabling its application in automatic navigation control systems for autonomous tractors. Keywords: Autonomous tractor, Path-tracking control, Sliding mode control, Yaw rate feedback.


2020 ◽  
Vol 10 (24) ◽  
pp. 9100
Author(s):  
Chenxu Li ◽  
Haobin Jiang ◽  
Shidian Ma ◽  
Shaokang Jiang ◽  
Yue Li

As a key technology for intelligent vehicles, automatic parking is becoming increasingly popular in the area of research. Automatic parking technology is available for safe and quick parking operations without a driver, and improving the driving comfort while greatly reducing the probability of parking accidents. An automatic parking path planning and tracking control method is proposed in this paper to resolve the following issues presented in the existing automatic parking systems, that is, low degree of automation in vehicle control; lack of conformity between segmented path planning and real vehicle motion models; and low success rates of parking due to poor path tracking. To this end, this paper innovatively proposes preview correction which can be applied to parking path planning, and detects the curvature outliers in the parking path through the preview algorithm. In addition, it is also available for correction in advance to optimize the reasonable parking path. Meanwhile, the dual sliding mode variable structure control algorithm is used to formulate path tracking control strategies to improve the path tracking control effect and the vehicle control automation. Based on the above algorithm, an automatic parking system was developed and the real vehicle test was completed, thus exploring a highly intelligent automatic parking technology roadmap. This paper provides two key aspects of system solutions for an automatic parking system, i.e., parking path planning and path tracking control.


Author(s):  
K. D. Do

Despite the fact that environmental loads (forces and moments) induced by wind on quadrotor vertical take-off and landing (VTOL) aircraft consist of both deterministic and stochastic components, all existing works on controlling the aircraft either ignore these loads or treat them as deterministic. This ignorance or treatment deteriorates the control performance in a practical implementation. This paper presents a constructive design of controllers for a quadrotor aircraft to track a reference path in three-dimensional (3D) space under both deterministic and stochastic disturbances. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to result in an effective control design, and to achieve path-tracking control results. Weak and strong nonlinear Lyapunov functions are introduced to overcome difficulties caused by underactuation and Hessian terms induced by stochastic differentiation rule. To overcome the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls. Potential projection functions are introduced to design estimates of the deterministic components and covariances of the stochastic components. Simulations illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document