Research on Monitoring of Tunnel Cable Insulation Layer Based on Terahertz Wave Clustering Analysis

Author(s):  
Zhang Zhonghao ◽  
Liu Haiying ◽  
Peng Guozheng ◽  
Liu Jiaxin ◽  
Li Sun
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xianjin Xu ◽  
Shichao Hu ◽  
Yu Yan ◽  
Yuhang Yang ◽  
Zhiyong Yang ◽  
...  

Considering the wire core which is easily damaged because of the instability of the power distribution robot during the process of peeling the insulation layer, we have proposed a cutting force tracking control algorithm based on impedance control that is suitable for the end peeling instrument. At present, the task requirement of sudden changes about environment stiffness cannot be accomplished by many impedance control approaches due to the complexity of working environment stiffness about power distribution robot; then, the Recursive Least Square (RLS) method was introduced into the impedance control algorithm to identify the cable insulation layer and cable core stiffness online to achieve accurate and stable tracking of the cutting force. Furthermore, the impedance control of peeling cable insulation layer and the proposed RLS method were simulated and tested contrastively, and the high-voltage cable peeling experiment was performed. The results of simulation and experiment showed that the force control algorithm based on RLS parameter identification still has good force tracking performance during the environment stiffness changes suddenly, and the steady-state error approaches zero, demonstrating the feasibility and effectiveness of the RLS impedance control algorithm, which has important practical significance for improving power distribution efficiency.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 204 ◽  
Author(s):  
Guang Yu ◽  
Yujia Cheng ◽  
Xiaohong Zhang

Low density polyethylene (LDPE) doped with inorganic nano-MMT and nano-ZnO particles improved the dielectric properties of the cable insulation layer. In this article, nano-MMT/LDPE and nano-ZnO/LDPE composites were prepared by polymer intercalation and melt blending, respectively. The octadecyl quaternary ammonium salt and silane coupling agent were applied for surface modification in nano-MMT and nano-ZnO particles, and this then improved the compatibility of nanoparticles and polymeric matrix. These samples were characterized by FTIR, PLM, DSC and TSC, from which the effect of nanoparticles doping on polymer crystal habit and interface traps would be explored. In these experiments, the AC breakdown characteristics and space charge characteristic of different composites were studied. The experimental results showed that the interface bonding of nanoparticles and polymer was improved by coupling agents modifying. The dispersion of nanoparticles in matrix was better. When the mass fraction of nanoparticles doping was 3 wt.%, the crystallization rate and crystallinity of composites increased, and the crystalline structure was more complete. Besides, the amorphous regions in material decreased and the conducting channel was circuitous. At this time, the breakdown field strength of nano-MMT/LDPE and nano-ZnO/LDPE increased by 10.3% and 11.1%, compared to that of pure LDPE, respectively. Furthermore, the density and depth of interface traps in polymer increased with nanoparticles doping. Nano-MMT and nano-ZnO could both restrain the space charge accumulation, and the inhibiting effect of nano-ZnO was more visible.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2249-PUB
Author(s):  
ALEJANDRO F. SILLER ◽  
XIANGJUN GU ◽  
MUSTAFA TOSUR ◽  
MARCELA ASTUDILLO ◽  
ASHOK BALASUBRAMANYAM ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document