Short-Circuit Currents and Circuit-Breaker Recovery Voltages Associated with 2-Phase-to-Ground Short Circuits [includes discussion]

Author(s):  
W. F. Skeats
2020 ◽  
Vol 220 ◽  
pp. 01011
Author(s):  
Igor Nikolaevich Fomin ◽  
Roman Pavlovich Belikov ◽  
Tatyana Anatolyevna Kudinova ◽  
Nailya Kamilevna Miftakhova

Circuit breakers with automatic transfer switches (ATS) are designed in such a way that when the voltage disappears during a short-circuit (SC) in the ring network line, the ATS device is triggered. At the same time, its switch is turned on at short-circuit, then it is turned off with acceleration. Even a shortterm switching on of the automatic transfer switch for a sustained short-circuit leads to emergency situations [1,2]. The electrical equipment of the ring network spare line is exposed to high emergency short-circuit currents, and the consumers powered by the spare transformer are turned off. It is possible to minimize and eliminate the damages caused by the above mentioned cases by inhibiting the switching on of the circuitbreaker of the automatic transfer switch.


2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.


2021 ◽  
pp. 98-100
Author(s):  
I. Radko ◽  
◽  
V. Nalivayko ◽  
O. Okushko ◽  
I. Bolbot ◽  
...  

According to PUE-2017, each group line must be protected against short circuits. Instant disconnection (cut-off) of the line in the event of short circuits provides an electromagnetic release of the circuit breaker. Reliable tripping is possible if the current of a single-phase short circuit is greater than the instantaneous tripping current. Today on the market are widely available circuit breakers with characteristics "B", "C" and "D", which are characterized by different multiplicities of the cut-off current of the electromagnetic release. Some European companies produce circuit breakers with other characteristics, which greatly expands the possibilities protection of electrical equipment. The difficulty in organizing the selectivity of protection is that the circuit breakers of modular design when switching off short circuits are characterized by the same switching time (not more than 0.05 s). The purpose of the research is to find ways to organize the selectivity of protection in electrical networks with voltage up to 1000 V using reliable values of short-circuit currents. In networks with a voltage of up to 1000 V, the current of a single-phase short circuit can be calculated fairly accurately if the exact values of all sections of the electrical network are known. In practice, it is not always possible to obtain reliable data on the numerical characteristics of the 0.4 kV network to which a new energy facility is connected. Therefore, it is proposed to consider part of the network as an active quadrupole, the characteristics of which are obtained by measurements at the point of connection. For further calculations it is necessary to know the voltage at the clamps of the four-pole scheme and the internal impedance. Based on the theory of four-pole scheme, you can get the original data for calculations without calculating the internal parameters of four-poles scheme. Thus, it is proposed to use a hybrid method for estimating the magnitude of probable short-circuit currents in electrical networks up to 1000 V when designing new energy facilities. Credible values of short-circuit currents will allow to organize selective protection of electric networks.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Natalia Radwan-Pragłowska ◽  
Artur Cebula

Single-phase short-circuits are most often faults in electrical systems. The analysis of this damage type is taken for backup power supply systems, from small power synchronous generators. For these hybrid installations, there is a need for standard protection devices, such as fuses or miniature circuit breaker (MCB) analysis. Experimental research mentioned that a typical protective apparatus in low-voltage installations, working correctly during supplying from the grid, does not guarantee fast off-switching, while short-circuits occur during supplication from the backup generator set. The analysis of single-phase short-circuits is executed both for current waveform character (including sub-transient and transient states) and the carried energy, to show the problems with the fuses and MCB usage, to protect circuits in installations fed in a hybrid way (from the grid and synchronous generator set).


2016 ◽  
Vol 63 (0) ◽  
pp. 43-60 ◽  
Author(s):  
Janusz BANDEL ◽  
Artur HEJDUK ◽  
Andrzej DZIERŻYŃSKI ◽  
Piotr KORYCKI ◽  
Henryk SIBILSKI

This paper deals with the surges generated in the network during switching operations and lightning surges. The level of both kinds of surge was compared with the required dielectric strength between the open contacts of 245 kV circuit breakers. Overvoltages greater than the electrical withstand voltage of the circuit breaker can cause arc ignition between the circuit breaker’s open contacts and power engineering service s have reported such cases. The results of such failures can be very serious. This is a problem especially for single-break circuit breakers, in which the stresses on the electrical insulation between the open contacts of the breaker are very high. A method for selecting lightning arresters to lower the overvoltages is proposed. The switching of short-circuit currents by a circuit breaker may cause a weakening of the circuit breaker chamber’s insulation and reduce its electrical withstand and durability.


2021 ◽  
Vol 11 (1) ◽  
pp. 405
Author(s):  
Daniel Alcala-Gonzalez ◽  
Eva Maria García del Toro ◽  
María Isabel Más-López ◽  
Santiago Pindado

The increase in the installation of renewable energy sources in electrical systems has changed the power distribution networks, and a new scenario regarding protection devices has arisen. Distributed generation (DG) might produce artificial delays regarding the performance of protection devices when acting as a result of short-circuits. In this study, the preliminary research results carried out to analyze the effect of renewable energy sources (photovoltaic, wind generation, etc.) on the protection devices of a power grid are described. In order to study this problem in a well-defined scenario, a quite simple distribution network (similar to the ones present in rural areas) was selected. The distribution network was divided into three protection zones so that each of them had DG. In the Institute of Electrical and Electronic Engineers (IEEE) system 13 bus test feeder, the short-circuits with different levels of penetration were performed from 1 MVA to 3 MVA (that represent 25%, 50%, and 75% of the total load in the network). In the simulations carried out, it was observed that the installation of DG in this distribution network produced significant changes in the short-circuit currents, and the inadequate performance of the protection devices and the delay in their operating times (with differences of up to 180% in relation to the case without DG). The latter, that is, the impacts of photovoltaic DG on the reactions of protection devices in a radial distribution network, is the most relevant outcome of this work. These are the first results obtained from a research collaboration framework established by staff from ETSI Civil and the IDR/UPM Institute, to analyze the effect of renewable energy sources (as DG) on the protection devices of a radial distribution network.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4729
Author(s):  
Rafał Tarko ◽  
Jakub Gajdzica ◽  
Wiesław Nowak ◽  
Waldemar Szpyra

The article deals with the problems of single-phase short-circuit current distribution in overhead power lines. Short-circuit disturbances cause many negative phenomena in power networks. Since experimental studies of short-circuits in real networks are practically impossible to perform, these effects can be evaluated only theoretically, based on short-circuit current calculations with the use of appropriate mathematical models. Although short-circuit modeling is considered to be one of the simplest power system calculations, the exact mathematical description of the phenomena occurring at short-circuits is complex. Simplified normative methods are often used for short-circuit current calculations; however, this does not give ground for a thorough analysis of short-circuit current distribution in power lines. The distributions are analyzed using power line models with different degrees of complexity in line with the assumptions made for a given model. The paper presents the problem of current distribution analysis in high-voltage overhead lines for single-phase faults to the tower structures. Simulation studies were conducted on the models developed for the calculation of short-circuit currents in the high-voltage power line earthing. The objective of the analysis was to assess the validity of simplification assumptions followed by practical recommendations on the applicability of the models.


Sign in / Sign up

Export Citation Format

Share Document