Kinematic analysis of a 5 DOF upper-limb exoskeleton with a tilted and vertically translating shoulder joint

Author(s):  
Yeongtae Jung ◽  
Joonbum Bae
2016 ◽  
Vol 823 ◽  
pp. 107-112
Author(s):  
Dan Mândru ◽  
Olimpiu Tǎtar ◽  
Simona Noveanu ◽  
Alexandru Ianoşi-Andreeva-Dimitrova

Based on upper limb’s biomechanisms, in this paper, a robotic rehabilitation system is presented. It is designed as a 4 DOFs wearable exoskeleton applicable for repetitive practice of passive or active movements of the arm in shoulder joint and forearm in elbow joint. The kinematic analysis of the proposed system is followed by the 3D model and a description of the developed prototype.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eduardo Piña-Martínez ◽  
Ricardo Roberts ◽  
Salvador Leal-Merlo ◽  
Ernesto Rodriguez-Leal

Exoskeletons arise as the common ground between robotics and biomechanics, where rehabilitation is the main field in which these two disciplines find cohesion. One of the most relevant challenges in upper limb exoskeleton design relies in the high complexity of the human shoulder, where current devices implement elaborate systems only to emulate the drifting center of rotation of the shoulder joint. This paper proposes the use of 3D scanning vision technologies to ease the design process and its implementation on a variety of subjects, while a motion tracking system based on vision technologies is applied to assess the exoskeleton reachable workspace compared with an asymptomatic subject. Furthermore, the anatomic fitting index is proposed, which compares the anatomic workspace of the user with the exoskeleton workspace and provides insight into its features. This work proposes an exoskeleton architecture that considers the clavicle motion over the coronal plane whose workspace is determined by substituting the direct kinematics model with the dimensional parameters of the user. Simulations and numerical examples are used to validate the analytical results and to conciliate the experimental results provided by the vision tracking system.


2018 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Hongbo Liang ◽  
Chi Zhu ◽  
Yu Iwata ◽  
Shota Maedono ◽  
Mika Mochita ◽  
...  

Brain-Machine Interface (BMI) has been considered as an effective way to help and support both the disabled rehabilitation and healthy individuals’ daily lives to use their brain activity information instead of their bodies. In order to reduce costs and control exoskeleton robots better, we aim to estimate the necessary torque information for a subject from his/her electroencephalography (EEG) signals when using an exoskeleton robot to perform the power assistance of the upper limb without using external torque sensors nor electromyography (EMG) sensors. In this paper, we focus on extracting the motion-relevant EEG signals’ features of the shoulder joint, which is the most complex joint in the human’s body, to construct a power assistance system using wearable upper limb exoskeleton robots with BMI technology. We extract the characteristic EEG signals when the shoulder joint is doing flexion and extension movement freely which are the main motions of the shoulder joint needed to be assisted. Independent component analysis (ICA) is used to extract the source information of neural components, and then the average method is used to extract the characteristic signals that are fundamental to achieve the control. The proposed approach has been experimentally verified. The results show that EEG signals begin to increase at 300–400 ms before the motion and then decrease at the beginning of the generation of EMG signals, and the peaks appear at about one second after the motion. At the same time, we also confirmed the relationship between the change of EMG signals and the EEG signals on the time dimension, and these results also provide a theoretical basis for the delay parameter in the linear model which will be used to estimate the necessary torque information in future. Our results suggest that the estimation of torque information based on EEG signals is feasible, and demonstrate the potential of using EEG signals via the control of brain-machine interface to support human activities continuously.


Sign in / Sign up

Export Citation Format

Share Document