Analysis of power loss of permanent magnet synchronous motors in more-electric-aircraft considering the impact of temperature

Author(s):  
Shengnan Wang ◽  
Yunhua Li ◽  
Yun-Ze Li ◽  
Kai Xiong
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5242
Author(s):  
Yung-Te Chen ◽  
Chi-Shan Yu ◽  
Ping-Nan Chen

In this study, we designed a feedback linearization control strategy for linear permanent magnet synchronous motors (LPMSMs) as well as a robust control mechanism. First, the highly nonlinear system was transformed into an exact linear system by the feedback linearization technique. Then, we designed a robust controller to mitigate the impact of system parameter disturbances on system performance. This novel robust feedback controller can be applied to electromagnetic force, speed and position control loops in linear motors, correct the errors created by uncertainty factors in the entire system in real time, and set the system’s settling time based on the application environment of the plant. Finally, we performed simulations and experiments using a PC-based motor control system, which demonstrated that the proposed robust feedback controller can achieve good performance in the controlled system with robust anti-disturbance control.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


Sign in / Sign up

Export Citation Format

Share Document