Active Tethered Hook: Heavy Load Movement using Hooks that Move Actively with Micro UAVs and Winch System

Author(s):  
Takamasa Kominami ◽  
Hannibal Paul ◽  
Ryo Miyazaki ◽  
Borwonpob Sumetheeprasit ◽  
Robert Ladig ◽  
...  
Keyword(s):  
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Gang Ren ◽  
Jingfeng Ma ◽  
Shunchao Wang ◽  
Jingcai Yu
Keyword(s):  

Author(s):  
Bengt Fellenius

On April 4, 2018, 209 days after driving, a static loading test was performed on a 50 m long, strain-gage instrumented, square 275-mm diameter, precast, shaft-bearing (“floating”) pile in Göteborg, Sweden. The soil profile consisted of a 90 m thick, soft, postglacial, marine clay. The groundwater table was at about 1.0 m depth. The undrained shear strength was about 20 kPa at 10 m depth and increased linearly to about 80 kPa at 55m depth. The load-distribution at the peak load correlated to an average effective stress beta-coefficient of 0.19 along the pile or, alternatively, a unit shaft shear resistance of 15 kPa at 10 m depth increasing to about 65 kPa at 50 m depth, indicating an α-coefficient of about 0.80. Prior to the test, geotechnical engineers around the world were invited to predict the load-movement curve to be established in the test—22 predictions from 10 countries were received. The predictions of pile stiffness, and pile head displacement showed considerable scatter, however. Predicted peak loads ranged from 65% to 200% of the actual 1,800-kN peak-load, and 35% to 300% of the load at 22-mm movement.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


2017 ◽  
Vol 31 (7) ◽  
pp. 1077-1086 ◽  
Author(s):  
Hanna Jangö ◽  
Søren Gräs ◽  
Lise Christensen ◽  
Gunnar Lose

Alternative approaches to reinforce native tissue in reconstructive surgery for pelvic organ prolapse are warranted. Tissue engineering combines the use of a scaffold with the regenerative potential of stem cells and is a promising new concept in urogynecology. Our objective was to evaluate whether a newly developed long-term degradable polycaprolactone scaffold could provide biomechanical reinforcement and function as a scaffold for autologous muscle fiber fragments. We performed a study with three different rat abdominal wall models where the scaffold with or without muscle fiber fragments was placed (1) subcutaneously (minimal load), (2) in a partial defect (partial load), and (3) in a full-thickness defect (heavy load). After 8 weeks, no animals had developed hernia, and the scaffold provided biomechanical reinforcement, even in the models where it was subjected to heavy load. The scaffold was not yet degraded but showed increased thickness in all groups. Histologically, we found a massive foreign body response with numerous large giant cells intermingled with the fibers of the scaffold. Cells from added muscle fiber fragments could not be traced by PKH26 fluorescence or desmin staining. Taken together, the long-term degradable polycaprolactone scaffold provided biomechanical reinforcement by inducing a marked foreign-body response and attracting numerous inflammatory cells to form a strong neo-tissue construct. However, cells from the muscle fiber fragments did not survive in this milieu. Properties of the new neo-tissue construct must be evaluated at the time of full degradation of the scaffold before its possible clinical value in pelvic organ prolapse surgery can be evaluated.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 488
Author(s):  
Yerganat Khojakhan ◽  
Kyoung-Min Choo ◽  
Junsin Yi ◽  
Chung-Yuen Won

In this paper, a stator inductance identification process is proposed. The process is based on a three-level neutral-point-clamped (NPC) inverter-fed induction motor (IM) drive with a standstill condition. Previously, a low-speed alternating current (AC) injection test for stator inductance identification was proposed to overcome practical problems in conventional identification methods for three-level NPC inverter-based IM drives. However, the low-speed AC injection test-based identification method has some problems if a heavy load or mechanical brake is connected, as these can forcibly bring the rotor to a standstill during parameter identification. Since this low-speed testing-based identification assumes the motor torque is considerably lower in low-speed operations, some inaccuracy is inevitable in this kind of standstill condition. In this paper, the proposed current injection speed generator is based on the previously studied low-speed test-based stator inductance identification method, but the proposed approach gives more accurate estimates under the aforementioned standstill conditions. The proposed method regulates the speed for sinusoidal low-frequency AC injection on the basis of the instantaneous reactive and air-gap active power ratio. This proposed stator inductance identification method is more accurate than conventional fixed low-frequency AC signal injection identification method for three-level NPC inverter-fed IM drive systems with a locked-rotor standstill condition. The proposed method’s accuracy and reliability were verified by simulation and experiment using an 18.5 kW induction motor.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuxiang Wang ◽  
Zhangwei Chen ◽  
Hongfei Zu ◽  
Xiang Zhang ◽  
Chentao Mao ◽  
...  

The positioning accuracy of a robot is of great significance in advanced robotic manufacturing systems. This paper proposes a novel calibration method for improving robot positioning accuracy. First of all, geometric parameters are identified on the basis of the product of exponentials (POE) formula. The errors of the reduction ratio and the coupling ratio are identified at the same time. Then, joint stiffness identification is carried out by adding a load to the end-effector. Finally, residual errors caused by nongeometric parameters are compensated by a multilayer perceptron neural network (MLPNN) based on beetle swarm optimization algorithm. The calibration is implemented on a SIASUN SR210D robot manipulator. Results show that the proposed method possesses better performance in terms of faster convergence and higher precision.


Sign in / Sign up

Export Citation Format

Share Document