A New Method of Visual Training for Amblyopia Using Binocular Training and Virtual Reality

Author(s):  
Chia-Chieh Lin ◽  
Chien-Hsing Chou
2018 ◽  
Vol 14 (08) ◽  
pp. 169
Author(s):  
Boris Ivanov Evstatiev

A new method for the realistic visualization of virtual cables in a 2D environment, which is representing a 3D virtual reality, is presented in this paper. They are described with two consecutive cubic Bezier curves, whose common point is movable. Experiment was carried out and the optimal proportions for the parameters of the curves were obtained in order to achieve a realistic representation of cables. The suggested method has been developed for and implemented in the Engine for Virtual Electrical Engineering Equipment. The obtained results show that it is easy to manipulate the route of the virtual cables in 2D space and that they look realistic for any position of the control point.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1397
Author(s):  
Shuaihe Zhao ◽  
Mengyi Zhao ◽  
Shuling Dai

Multi-projector display systems are widely used in virtual reality, flight simulators, and other entertainment systems. Geometric distortion and color inconsistency are two key problems to be solved. In this paper a geometric correction principle is theoretically demonstrated and a consistency principle of geometric correction is first proposed. A new method of automatic registration of a multi-projector on a curved screen is put forward. Two pairs of binocular-cameras are used to reconstruct the curved screen. To capture feature points of the curved screen precisely, a group of red-blue coded structured light images is designed to be projected onto the screen. Geometric homography between each projector and the curved screen is calculated to gain a pre-warp template. Work which can gain a seamless display is illustrated by a six-projector system on the curved screen.


2013 ◽  
Vol 22 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Weixin Wu ◽  
Yujie Dong ◽  
Adam Hoover

This paper describes a new method for measuring the end-to-end latency between sensing and actuation in a digital computing system. Compared to previous works, which generally measured the latency at 10–33-ms intervals or at discrete events separated by hundreds of ms, our new method measures the latency continuously at 1-ms resolution. This allows for the observation of variations in latency over sub 1-s periods, instead of relying upon averages of measurements. We have applied our method to two systems, the first using a camera for sensing and an LCD monitor for actuation, and the second using an orientation sensor for sensing and a motor for actuation. Our results show two interesting findings. First, a cyclical variation in latency can be seen based upon the relative rates of the sensor and actuator clocks and buffer times; for the components we tested, the variation was in the range of 15–50 Hz with a magnitude of 10–20 ms. Second, orientation sensor error can look like a variation in latency; for the sensor we tested, the variation was in the range of 0.5–1.0 Hz with a magnitude of 20–100 ms. Both of these findings have implications for robotics and virtual reality systems. In particular, it is possible that the variation in apparent latency caused by orientation sensor error may have some relation to simulator sickness.


2014 ◽  
Vol 651-653 ◽  
pp. 1511-1514 ◽  
Author(s):  
Xian Li ◽  
Hu Liu

With the rapid development of the air transport industry, more attention is paid to interior ergonomics analysis which directly affects the time and cost spent during design. To provide a quick and human-in-loop accessibility way to evaluate accessibility in aircraft cabin, a new method based on virtual reality is proposed. In this method, the digital mock-up model is converted to other format which is need to build a virtual environment first, then virtual environment is built and a virtual hand is driven through tracking hand’s position by A.R.T(Advanced Realtime Tracking ) system to carry on accessibility evaluation in the virtual environment. Based on above-mentioned method the aircraft cabin accessibility evaluation system is designed and realized, which is verified by one case of a certain aircraft cabin. The result shows this method is simple and useful, offering a new way for accessibility evaluation in aircraft cabin.


2021 ◽  
Vol 44 (2) ◽  
pp. 279-282
Author(s):  
Kazuyuki Niki ◽  
Maki Yasui ◽  
Maika Iguchi ◽  
Tomomi Isono ◽  
Hiroto Kageyama ◽  
...  

2019 ◽  
Vol 65 ◽  
pp. 101338 ◽  
Author(s):  
A. Armougum ◽  
E. Orriols ◽  
A. Gaston-Bellegarde ◽  
C. Joie-La Marle ◽  
P. Piolino

2019 ◽  
Vol 76 (1) ◽  
pp. 24-28
Author(s):  
Juraj Halička ◽  
Erik Sahatqija ◽  
Michal Krasňanský ◽  
Karolína Kapitánová ◽  
Monika Fedorová ◽  
...  

Purpose: Amblyopia is one of the most common childhood disease. The average prevalence of amblyopia in children is estimated at 2-5 %. It arises during the child development until the age of six, if not treated then, it persist throught adulthood. The aim of our work is to retrospectively analyze the results of treatment of anisometropic amblyopia using dichoptical training in virtual reality in adult amblyopic patients. Materials and Methods: Our group consisted of 84 amblyopic patients with anisometropic amblyopia with an average age of 33.8 ± 9.4 years. Patients played a video game twice a week in the Oculus Rift 3D virtual reality. Together they completed 8 visual trainings, with one training lasting 60 minutes. Before and after the training we evaluated the best corrected visual acuity (BCVA). Discussion: Throughout the group, we observed an improvement of 0.1 BCVA from 0.48 to 0.58 Sloan table (p <0.05). 17% of patients before training and 31% after visual training reached BCVA better or equal to 0.9. The overall response rate was 56% in adult patients (n = 47). Conclusion: Our results suggest that a certain degree of residual neuro-plasticity in the visual cortex can be revealed in the adult brain, thereby improve visual acuity in adult amblyopic patients.


2014 ◽  
Vol 34 (3) ◽  
pp. 244-254 ◽  
Author(s):  
Wanbin Pan ◽  
Yigang Wang ◽  
Peng Du

Purpose – The purpose of this paper is to develop an automatic disassembly navigation approach for human interactions in the virtual environment to achieve accurate and effective virtual assembly path planning (VAPP). Design/methodology/approach – First, to avoid the error-prone human interactions, a constraint-based disassembly method is presented. Second, to automatically provide the next operable part(s), a disassembly navigation mechanism is adopted. Finally, the accurate assembly path planning can be obtained effectively and automatically by inversing the ordered accurate disassembly paths, which are obtained interactively in the virtual environment aided with the disassembly navigation matrix. Findings – The applications present that our approach can effectively avoid the error-prone interactive results and generate accurate and effective VAPP. Research limitations/implications – There are several works that could be conducted to make our approach more general in the future: to further study the basic disassembly direction deducing rules to make the process of determining disassembly direction totally automatic, to consider the hierarchy of the parts in virtual reality system and to consider the space for assembly/disassembly tools or operators. Originality/value – The approach has the following characteristics: a new approach to avoid the error-prone human interactions for accurate assembly path planning obtaining, a new constraint deducing method for determining the disassembly semantics automatically or semi-automatically is put forward and a new method for automatically identifying operable parts in VAPP is set forward.


Sign in / Sign up

Export Citation Format

Share Document