Robust motion control algorithm for brushless direct drive motor

Author(s):  
A. Hace ◽  
K. Jezernik
2006 ◽  
Vol 18 (5) ◽  
pp. 598-607 ◽  
Author(s):  
Tomoari Maruyama ◽  
◽  
Chunquan Xu ◽  
Aiguo Ming ◽  
Makoto Shimojo

We have developed a golf robot whose swing simulates human motion. The design concept is to realize ultra-high-speed dynamic manipulation using a dexterous mechanism. The robot consists of a shoulder joint with a high-power direct-drive motor and a wrist joint with a low-power direct-drive motor. High-speed golf swings are realized by a sort of motion control, called dynamically-coupled driving which compensates for the lack of drive in the wrist joint. In this paper a new model accounting for golf club flexibility with all parameters identified in experiments was developed. Based on this, we generated and implemented trajectories for different criteria. Experimental results confirmed the high accuracy of motion control and the feasibility of golf club flexibility in ultra-high-speed manipulation.


1999 ◽  
Vol 10 (9) ◽  
pp. 728-731 ◽  
Author(s):  
Naoyuki Takesue ◽  
Guoguang Zhang ◽  
Junji Furusho ◽  
Masamichi Sakaguchi

Author(s):  
NAOYUKI TAKESUE ◽  
GUOGUANG ZHANG ◽  
JUNJI FURUSHO ◽  
MASAMICHI SAKAGUCHI

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 297
Author(s):  
Ali Marzoughi ◽  
Andrey V. Savkin

We study problems of intercepting single and multiple invasive intruders on a boundary of a planar region by employing a team of autonomous unmanned surface vehicles. First, the problem of intercepting a single intruder has been studied and then the proposed strategy has been applied to intercepting multiple intruders on the region boundary. Based on the proposed decentralised motion control algorithm and decision making strategy, each autonomous vehicle intercepts any intruder, which tends to leave the region by detecting the most vulnerable point of the boundary. An efficient and simple mathematical rules based control algorithm for navigating the autonomous vehicles on the boundary of the see region is developed. The proposed algorithm is computationally simple and easily implementable in real life intruder interception applications. In this paper, we obtain necessary and sufficient conditions for the existence of a real-time solution to the considered problem of intruder interception. The effectiveness of the proposed method is confirmed by computer simulations with both single and multiple intruders.


Sign in / Sign up

Export Citation Format

Share Document