Remote sensing water content in a clay / sand mixture using Impedance Computed Tomography

Author(s):  
Guye S. Strobel ◽  
Zhen Mu ◽  
Al Wexler
Author(s):  
Colombo Roberto ◽  
Busetto Lorenzo ◽  
Meroni Michele ◽  
Rossini Micol ◽  
Panigada Cinzia

2007 ◽  
Vol 7 (3) ◽  
pp. 8455-8524
Author(s):  
B. Hennemuth ◽  
A. Weiss ◽  
J. Bösenberg ◽  
D. Jacob ◽  
H. Linné ◽  
...  

Abstract. A comparison study of water cycle parameters derived from ground-based remote-sensing instruments and from the regional model REMO is presented. Observational data sets were collected during three measuring campaigns in summer/autumn 2003 and 2004 at Richard Aßmann Observatory, Lindenberg, Germany. The remote sensing instruments which were used are differential absorption lidar, Doppler lidar, ceilometer, cloud radar, and micro rain radar for the derivation of humidity profiles, ABL height, water vapour flux profiles, cloud parameters, and rain rate. Additionally, surface latent and sensible heat flux and soil moisture were measured. Error ranges and representativity of the data are discussed. For comparisons the regional model REMO was run for all measuring periods with a horizontal resolution of 18 km and 33 vertical levels. Parameter output was every hour. The measured data were transformed to the vertical model grid and averaged in time in order to better fit with gridbox model values. The comparisons show that the atmospheric boundary layer is not adequately simulated, on most days it is too shallow and too moist. This is found to be caused by a wrong partitioning of energy at the surface, particularly a too large latent heat flux. The reason is obviously an overestimation of soil moisture during drying periods by the one-layer scheme in the model. The profiles of water vapour transport within the ABL appear to be realistically simulated. The comparison of cloud cover reveals an underestimation of low-level and mid-level clouds by the model, whereas the comparison of high-level clouds is hampered by the inability of the cloud radar to see cirrus clouds above 10 km. Simulated ABL clouds apparently have a too low cloud base, and the vertical extent is underestimated. The ice water content of clouds agree in model and observation whereas the liquid water content is unsufficiently derived from cloud radar reflectivity in the present study. Rain rates are similar, but the representativeness of both observations and grid box values is low.


2021 ◽  
Author(s):  
Mehrez Zribi ◽  
Simon Nativel ◽  
Michel Le Page

<p>This paper aims to analyze the agronomic drought in a highly anthropogenic  semi-arid region, North Africa. In the context of the Mediterranean climate, characterized by frequent droughts, North Africa is particularly affected. Indeed, in addition to this climatic aspect, it is one of the areas most affected by water scarcity in the world. Thus, understanding and describing agronomic drought is essential. The proposed study is based on remote sensing data from TERRA-MODIS and ASCAT satellite, describing the dynamics of vegetation cover and soil water content through NDVI and SWI indices. Two indices are analyzed, the Vegetation Anomaly Index (VAI) and the Moisture Anomaly Index (MAI). The dynamics of the VAI is analyzed for different types of regions (agircultural, forest areas). The contribution of vegetation cover is combined with the effect of soil water content through a new drought index combining the VAI and MAI. A discussion of this combination is proposed on different study areas in the study region. It illustrates the complementarity of these two informations in analysis of agronomic drought.</p>


2017 ◽  
Vol 37 (10) ◽  
pp. 1028001 ◽  
Author(s):  
姜雪芹 Jiang Xueqin ◽  
叶 勤 Ye Qin ◽  
林 怡 Lin Yi ◽  
李西灿 Li Xican

2001 ◽  
Vol 59-60 ◽  
pp. 295-312 ◽  
Author(s):  
Steven P Love ◽  
Anthony B Davis ◽  
Cheng Ho ◽  
Charles A Rohde

Sign in / Sign up

Export Citation Format

Share Document