A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation

Author(s):  
R. Teodorescu ◽  
F. Blaabjerg ◽  
U. Borup ◽  
M. Liserre
2018 ◽  
Vol 138 (5) ◽  
pp. 498-505 ◽  
Author(s):  
Toyoaki Tanikawa ◽  
Tomohiro Henmi ◽  
Akira Inoue ◽  
Akira Yanou ◽  
Shinich Yoshinaga
Keyword(s):  

Author(s):  
Carlos R. Baier ◽  
Roberto Ramirez ◽  
Esteban Ignacio Marciel ◽  
Jesus de la Casa Hernandez ◽  
Pedro Eduardo E. Melin Coloma ◽  
...  

Author(s):  
Gennaro Di Meo ◽  
Davide De Caro ◽  
Gerardo Saggese ◽  
Ettore Napoli ◽  
Nicola Petra ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2544 ◽  
Author(s):  
En-Chih Chang

In this paper, an intelligent sliding mode controlled voltage source inverter (VSI) is developed to achieve not only quick transient behavior, but satisfactory steady-state response. The presented approach combines the respective merits of a nonsingular fast terminal attractor (NFTA) as well as an adaptive neuro-fuzzy inference system (ANFIS). The NFTA allows no singularity and error states to be converged to the equilibrium within a finite time, while conventional sliding mode control (SMC) leads to long-term (infinite) convergent behavior. However, there is the likelihood of chattering or steady-state error occurring in NFTA due to the overestimation or underestimation of system uncertainty bound. The ANFIS with accurate estimation and the ease of implementation is employed in NFTA for suppressing the chatter or steady-state error so as to improve the system’s robustness against uncertain disturbances. Simulation results display that this described approach yields low distorted output wave shapes and quick transience in the presence of capacitor input rectifier loading as well as abrupt connection of linear loads. Experimental results conducted on a 1 kW VSI prototype with control algorithm implementation in Texas Instruments DSP (digital signal processor) support the theoretic analysis and reaffirm the robust performance of the developed VSI. Because the proposed VSI yields remarkable benefits over conventional terminal attractor VSIs on the basis of computational quickness and unsophisticated realization, the presented approach is a noteworthy referral to the designers of correlated VSI applications in future, such as DC (direct current) microgrids and AC (alternating current) microgrids, or even hybrid AC/DC microgrids.


2014 ◽  
Vol 903 ◽  
pp. 285-290 ◽  
Author(s):  
Hazriq Izzuan Jaafar ◽  
Zaharuddin Mohamed ◽  
Amar Faiz Zainal Abidin ◽  
Zamani Md Sani ◽  
Jasrul Jamani Jamian ◽  
...  

This paper presents development of an optimal PID and PD controllers for controlling the nonlinear Gantry Crane System (GCS). A new method of Binary Particle Swarm Optimization (BPSO) algorithm that uses Priority-based Fitness Scheme is developed to obtain optimal PID and PD parameters. The optimal parameters are tested on the control structure to examine system responses including trolley displacement and payload oscillation. The dynamic model of GCS is derived using Lagrange equation. Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time, steady state error and overshoot. The result not only confirmed the successes of using new method for GCS, but also shows the new method performs more efficiently compared to the continuous PSO. This proposed technique demonstrates that implementation of Priority-based Fitness Scheme in BPSO is effective and able to move the trolley as fast as possible to the desired position with low payload oscillation.


Sign in / Sign up

Export Citation Format

Share Document