Pulse-width modulation scheme for a ZVS single-phase inverter in rectifier operation

Author(s):  
Yenan Chen ◽  
Dehong Xu
2021 ◽  
Vol 2107 (1) ◽  
pp. 012051
Author(s):  
M. Z. Aihsan ◽  
A. M. Yusof ◽  
Hasliza A Rahim ◽  
B. Ismail ◽  
W. A. Mustafa ◽  
...  

Abstract This article organized in two sections where it compares the performance of single-phase inverters using various types of inductors with differences modulation technique of pulse width modulation (PWM). Not all inductors perform the same function, even the inductance value is the same. The study will investigate the capability of each inductor on its performance to convert the unfiltered AC voltage into filtered sinusoidal AC voltage. The drum core and toroidal core inductors were used in this investigation. For both inductors, the performance will be analyzed based on Bipolar and Unipolar switching schemes in a single unit H-bridge circuit. The validation of results are through experimental assessment only and it will be evaluating the shape of sinusoidal AC voltage and the content of total harmonics distortion in the AC voltage for both inductors.


Author(s):  
Basem E. Elnaghi ◽  
Mohamed E. Dessouki ◽  
M. N. Abd-Alwahab ◽  
Elwy E. Elkholy

This paper offers a two-stage boost converter for a single-phase inverter without transformer for PV systems. Each stage of the converter is separately controlled by a pulse width modulated signal. A Simulink model of the converter using efficient voltage control topology is developed. The proposed circuit performance characteristics are explained and the obtained simulation results are confirmed through the applied experiments. Moreover, this paper has examined the control circuit of a single-phase inverter that delivers a pure sine wave with an output voltage that has the identical value and frequency as a grid voltage. A microcontroller supported an innovative technology is utilized to come up with a sine wave with fewer harmonics, much less price and an easier outline. A sinusoidal pulse width modulation (SPWM) technique is used by a microcontroller. The developed inverter integrated with the two-stage boost converter has improved the output waveform quality and controlled the dead time as it decreased to 63 µs compared to 180 µs in conventional methods. The system design is reproduced in Proteus and PSIM Software to analyze its operation principle that is confirmed practically.


2017 ◽  
Vol 32 (11) ◽  
pp. 8593-8605 ◽  
Author(s):  
Hussain A. Attia ◽  
Tan Kheng Suan Freddy ◽  
Hang Seng Che ◽  
Wooi Ping Hew ◽  
Ahmad H. El Khateb

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.


Sign in / Sign up

Export Citation Format

Share Document