scholarly journals Comparative investigations on different types of inductors in single-phase inverter

2021 ◽  
Vol 2107 (1) ◽  
pp. 012051
Author(s):  
M. Z. Aihsan ◽  
A. M. Yusof ◽  
Hasliza A Rahim ◽  
B. Ismail ◽  
W. A. Mustafa ◽  
...  

Abstract This article organized in two sections where it compares the performance of single-phase inverters using various types of inductors with differences modulation technique of pulse width modulation (PWM). Not all inductors perform the same function, even the inductance value is the same. The study will investigate the capability of each inductor on its performance to convert the unfiltered AC voltage into filtered sinusoidal AC voltage. The drum core and toroidal core inductors were used in this investigation. For both inductors, the performance will be analyzed based on Bipolar and Unipolar switching schemes in a single unit H-bridge circuit. The validation of results are through experimental assessment only and it will be evaluating the shape of sinusoidal AC voltage and the content of total harmonics distortion in the AC voltage for both inductors.


Author(s):  
Basem E. Elnaghi ◽  
Mohamed E. Dessouki ◽  
M. N. Abd-Alwahab ◽  
Elwy E. Elkholy

This paper offers a two-stage boost converter for a single-phase inverter without transformer for PV systems. Each stage of the converter is separately controlled by a pulse width modulated signal. A Simulink model of the converter using efficient voltage control topology is developed. The proposed circuit performance characteristics are explained and the obtained simulation results are confirmed through the applied experiments. Moreover, this paper has examined the control circuit of a single-phase inverter that delivers a pure sine wave with an output voltage that has the identical value and frequency as a grid voltage. A microcontroller supported an innovative technology is utilized to come up with a sine wave with fewer harmonics, much less price and an easier outline. A sinusoidal pulse width modulation (SPWM) technique is used by a microcontroller. The developed inverter integrated with the two-stage boost converter has improved the output waveform quality and controlled the dead time as it decreased to 63 µs compared to 180 µs in conventional methods. The system design is reproduced in Proteus and PSIM Software to analyze its operation principle that is confirmed practically.



2017 ◽  
Vol 32 (11) ◽  
pp. 8593-8605 ◽  
Author(s):  
Hussain A. Attia ◽  
Tan Kheng Suan Freddy ◽  
Hang Seng Che ◽  
Wooi Ping Hew ◽  
Ahmad H. El Khateb


Author(s):  
Laith A. Mohammed ◽  
Taha A. Husain ◽  
Ahmed M. T. Ibraheem

This paper presents design and practical implementation of single-phase inverter based on selective harmonic elimination-pulse width modulation (SHE-PWM) technique. Microcontroller mega type Arduino used as a controller for producing the gate pulses. The optimized switching angles determination results in wide range of output voltage. Depending on number of switching angles, the lower order harmonics (LOHs) can be eliminated to improve the output voltage waveform. A comparison study using MATLAB/Simulink for sinusoidal-PWM and SHE-PWM techniques, which shows for the same LOH in the output voltage waveform, the SHE-PWM has less number of pulses per half cycle than sinusoidal-PWM strategy. The reduction in number of pulses results less switching losses. The simulation done using ten switching angles to drive R-L load. A prototype of SHE-PWM inverter with R-L load is used to validate the simulation results.



Author(s):  
Hussain Attia ◽  
Hang Seng Che ◽  
Tan Kheng Suan Freddy ◽  
Ahmad Elkhateb

The single phase inverter performance through the unipolar and bipolar strategies has been previously analyzed based on the constant switching frequency pulse width modulation (CSFPWM). However, the confined band variable switching frequency PWM (CB-VSFPWM) is currently proposed as a new variable switching frequency PWM technique through unipolar strategy to facilitate the design of high order filter, to reduce the switching losses, and to reduce the current total harmonics distortion (THD) as well. To evaluate the performance of a single phase inverter based on the CBVSFPWM through bipolar strategy, this paper presents a comparative study of the CB-VSFPWM based inverter performance using the unipolar PWM and the bipolar PWM strategies. The study adopts MATLAB/Simulink to simulate the inverter and to analyze the simulation results in terms of harmonics spectrum, total harmonic distortion (THD), and fundamental components. The analysis of the study results gives an indication about the appropriate type of CB-VSFPWM strategy (unipolar PWM or bipolar PWM) to guarantee the desired performance of the connected inverter in terms of the electrical grid standards like THD, and harmonics spectrum of the inverter current.



Author(s):  
Ibrahim Alhamrouni ◽  
N. Zainuddin ◽  
Mohamed Salem ◽  
Nadia H. A. Rahman ◽  
Lili Awalin

<p>The application of fossil fuels likes coal, oil and gas gives the enormous environmental impact and hazardous effects to the earth. Hence, renewable energy has become the most tremendously friendly methods to generate the electricity without pollution and emissions. Inverter is a power electronics device which is used to convert Direct Current (DC) into Alternating Current (AC). The conventional inverter no longer fulfills the requirement of reducing harmonic distortions plus it causes global warming and greenhouse effect. For increasing the efficiency and reliability of the system, the PV inverter becomes a vital part in the conversion of DC to AC output. This research thus presents a single phase photovoltaic inverter controlled with sinusoidal pulse-width-modulation (SPWM) and low pass filter connection between the inverter and the utility grid to reduce the harmonics due to intermittent nature of the renewable energy sources. Unipolar and Bipolar switching scheme are applied to control the magnitude and frequency of output voltage and result of both unipolar and bipolar are compared. The simulation of the proposed technique is executed by using Matlab/Simulink.</p>



Sign in / Sign up

Export Citation Format

Share Document