A Driving Loss and Speed Co-Optimized Series Resonant Gate Driver with Novel Time Segmented Methodology for High Frequency SiC MOSFETs

Author(s):  
Hao Peng ◽  
Han Peng ◽  
Ziyue Dang ◽  
Yong Kang ◽  
Zhiqiang Wang ◽  
...  
2021 ◽  
Author(s):  
Jahangir Afsharian

This thesis is devoted to the development of a novel parallel isolated power supply (PIPS) for the gate driver of integrated Gate Commutated Thyristors (GCT). The proposed PIPS is essentially a special high frequency soft switched DC/DC converter, integrating six parallel isolated power supplies in one module where each power supply generates a regulated dc supply for the GCT gate driver. In commercial GCT power supplies, a high-voltage isolation transformer is indispensable but highly inefficient in terms of cost and size, which can be significantly improved by the optimized transformer. In all, this design strives to achieve a general power supply for powering up the gate drivers of all types of GCT devices in all MV applications with minimal changes in configuration. In this thesis, the configuration of PIPS is presented and its operating principle is elaborated. The transformer optimization procedure satisfying the voltage isolation requirement of GCT gate drivers is extensively discussed. The performance of PIPS, including the front end DC/DC converter, zero voltage switching phase-shift full bridge (ZVS-PS-FB) converter, and the optimization of the transformer, is verified by simulations and experiments where a 360W laboratory prototype is built for the experimental use.


Author(s):  
M. Saravanan ◽  
A. Ramesh Babu

Induction heating application uses uniquely high frequency series resonant inverter for achieving high conversion efficiency. The proposed work focus on improving the practical constraints in requiring the cooling arrangements necessary for switching devices used in resonant inverter due to higher switching and conduction losses. By introducing high frequency Multi- MOSFET based series resonant inverter for the application of induction heating with the following merits such as minimum switching and conduction losses using low voltage grade  of automotive MOSFET’s and higher conversion efficiency with high frequency operation. By adding series combination of low voltage ratedMulti MOSFET switches, temperature variation according to the on-state resistance issues can be avoided by sharing the voltage across the switches depends on number switches connected in the bridge circuit without comprising existing system performance parameter such as THD, power factor, output power. Simulation results also presents to verify that the proposed system achieve higher converter efficiency.


Author(s):  
S. Dhayanandh ◽  
S. Manoharan

Intensive utilization of Induction Heating (IH) innovations can be seen in numerous areas such as manufacturing industries, domestic or house hold and medicinal applications. The development of high switching frequency switches has encouraged the structure of high frequency inverters which are the key component of IH technology. Controlling the power output in a high frequency inverter for IH application is relatively complicated. This paper focuses on designing and developing a typical series resonance inverter and control it by FPGA-based controller. A MOSFET switch-based DC to AC converter is designed and Zero Voltage Switching (ZVS)-based switching strategy is accomplished to acquire less stress on switching devices and greater conversion efficiency. In this technique, secondary switched capacitor cell was proposed for resonant inverter of high frequency. To optimize the performance of the proposed inverter, the FPGA-based control system is implemented. Higher power density is the greatest advantage of this topology. The experimental and simulation model of the proposed series resonant inverter (SRI) for heating applications is developed and simulated using MATLAB/Simulink software.


Sign in / Sign up

Export Citation Format

Share Document