Modeling of High T/sub c/ Superconducting Planar Transmission Lines for High Frequency and High Speed Electronics

Author(s):  
K.-S. Kong ◽  
O.R. Baiocchi ◽  
T. Itoh
2009 ◽  
Author(s):  
A. P. Chernyaev ◽  
V. A. Dravin ◽  
A. Yu. Golovanov ◽  
A. L. Karuzskii ◽  
A. E. Krapivka ◽  
...  

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000047-000053
Author(s):  
J. Phillip Bailey ◽  
Michael D. Glover ◽  
Emmanuel Decrossas ◽  
Kaoru Porter ◽  
Tom Cannon ◽  
...  

The many advantages of low temperature co-fired ceramic (LTCC) materials are increasing their use in multi-layer systems containing multiple high-frequency / high-speed digital interconnects. Although construction of such interconnects is possible with current fabrication techniques, the loss exhibited by transmission lines at high frequencies limits their application by increasing system power consumption or requiring complex transceivers. Use of non-standard metal printing processes provides one possibility for realizing lower insertion loss desired for these interconnects. We have fabricated and evaluated representative single-ended and differential stripline transmission line structures using single, double, and mirror printing techniques for Ag metalization in DuPont 9K7 LTCC, to explore their suitability for high-frequency/high-speed applications. Discussion of analysis performed on cross-sections of these structures to determine post-firing geometry, as well as the level of fabrication control afforded over these parameters will be presented. To predict their performance for high-speed interconnects, 3D electromagnetic (3DEM) simulation models for characterizing the frequency performance of single-ended and differential structures have been also been developed. These 3DEM models have also been used in time domain simulations to verify digital signal capability by demonstrating structure performance at data rates exceeding 25 Gbps. Measurements of fabricated structures corresponding to the 3DEM models have also been performed in both the time and frequency domain and will be compared to the simulation results to confirm 3DEM model accuracy. The culmination of results from simulation and measurement will be used to present the differences, advantages, and disadvantages of each fabrication technique.


Author(s):  
Valentina Korchnoy ◽  
Jacov Brener

Abstract High frequency signal propagation through transmission lines has been an important discipline for RF engineers. With advancements in digital technologies, especially when data rates reached multiple Gb/s, package designers have to consider parameters such as transmission loss and trace impedance in order to maintain signal integrity. For high frequency signals, the surface roughness of the copper trace becomes increasingly significant in determining conduction loss, due to current confinement to the conductor surface by the skin effect. Accurate 3D conductor surface maps are required for correct trace insertion loss simulation. Practical methods for package trace exposure and 3D surface height map acquisition are discussed in this paper. Advantages and disadvantages of these methods, and their implementation to real packages are shown. Using electrical parameters resulting from a 3D trace surface map, the error between electrical simulations and actual measurements of insertion loss in an FCBGA package have been reduced from 6% to nearly zero, enabling tighter margins in 10GB/s high speed serial design.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yokesh V. ◽  
Gulam Nabi Alsath Mohammed ◽  
Malathi Kanagasabai

Purpose The purpose of this paper is to design a suitable guard trace to reduce the electromagentic interference between two closely spaced high frequency transmission lines. A novel cross-shaped resonator combined via fence is passed down to alleviate far-end and near-end crosstalk (NEXT) in tightly coupled high-speed transmission lines. The distance between the adjacent transmission lines is increased stepwise as a function of trace width. Design/methodology/approach A rectangular-shaped resonator via fence is connected by a guard trace has been proposed to overcome the coupling between the traces that is separated by 2 W. Similarly, by creating a cross-shaped resonator via fence connected by guard trace that reduces the spacing further by 1.5 W. Findings A tightly coupled transmission line structure that needs separation by a designed unit cell structure. Further research needs to be conducted to improve the NEXT, far-end crosstalk (FEXT) and spacing between the transmission lines. Originality/value This study portrays a novel method that combines the resonators via fence with a minimum spacing between the tightly coupled transmission lines which reduce the NEXT and FEXT; thereby reducing the size of the routing area. The resultant test structures are characterized at high frequencies using time domain and frequency domain analysis. The following scattering parameters such as insertion loss, NEXT and FEXT of the proposed method are measured as 1.504 dB, >30 dB and >20 dB, respectively.


2002 ◽  
Vol 12 (4) ◽  
pp. 128-130 ◽  
Author(s):  
A.M.E. Safwat ◽  
K.A. Zaki ◽  
W. Johnson ◽  
C.H. Lee

Sign in / Sign up

Export Citation Format

Share Document