A Practical Method for Trace Exposure and Roughness Measurements and Implementation in High Speed Package Design
Abstract High frequency signal propagation through transmission lines has been an important discipline for RF engineers. With advancements in digital technologies, especially when data rates reached multiple Gb/s, package designers have to consider parameters such as transmission loss and trace impedance in order to maintain signal integrity. For high frequency signals, the surface roughness of the copper trace becomes increasingly significant in determining conduction loss, due to current confinement to the conductor surface by the skin effect. Accurate 3D conductor surface maps are required for correct trace insertion loss simulation. Practical methods for package trace exposure and 3D surface height map acquisition are discussed in this paper. Advantages and disadvantages of these methods, and their implementation to real packages are shown. Using electrical parameters resulting from a 3D trace surface map, the error between electrical simulations and actual measurements of insertion loss in an FCBGA package have been reduced from 6% to nearly zero, enabling tighter margins in 10GB/s high speed serial design.