Examination of large radius of curvature approximation for rough surface scatter cross sections

Author(s):  
E. Bahar ◽  
M. El-Shenawee
1998 ◽  
Vol 120 (3) ◽  
pp. 441-447 ◽  
Author(s):  
K. Kawasaki ◽  
H. Tamura

In this paper, a duplex spread blade method for cutting hypoid gears with modified tooth surface is proposed. The duplex spread blade method provides a rapid and economical manufacturing method because both the ring gear and pinion are cut by a spread blade method. In the proposed method, the nongenerated ring gear is manufactured with cutting edge that is altered from the usual straight line to a circular arc with a large radius of curvature and the circular arc cutting edge produces a modified tooth surface. The pinion is generated by a cutter with straight cutting edges as usual. The main procedure of this method is the determination of the cutter specifications and machine settings. The proposed method was validated by gear manufacture.


1980 ◽  
Vol 58 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Gilles Duret ◽  
Gérard Zepp ◽  
Alain Wick

Most of the approximate theories of the spherical open resonators are insufficient, except for the very large radius of curvature. It is often necessary to consider other cases. The theory we have developed is applicable for any curvature and aperture of the mirrors. This theory also allows study of multi-dielectric cavities. This method is accurately studied in detail in this paper.


Author(s):  
Fraser B. Jones ◽  
Dale W. Fox ◽  
David G. Bogard

Abstract Film cooling is used to protect turbine components from the extreme temperatures by ejecting coolant through arrays of holes to create an air buffer from the hot combustion gases. Limitations in traditional machining meant film cooling holes universally have sharp inlets which create separation regions at the hole entrance. The present study uses experimental and computational data to show that these inlet separation are a major cause of performance variation in crossflow fed film cooling holes. Three hole designs were experimentally tested by independently varying the coolant velocity ratio (VR) and the coolant channel velocitty ratio (VRc) to isolate the effects of crossflow on hole performance. Leveraging additive manufacturing technologies, the addition of a 0.25D radius fillet to the inlet of a 7-7-7 shaped hole is shown to significantly improve diffuser usage and significantly reduce variation in performance with VRc. A second AM design used a very large radius of curvature inlet to reduce biasing caused by the inlet crossflow. Experiments showed that this “swept” hole design did minimize biasing of coolant flow to one side of the shaped hole and it significantly reduced variations due to varying VRc. RANS simulations at six VR and three VRc conditions were made for each geometry to better understand how the new geometries changed the velocity field within the hole. The sharp and rounded inlets were seen to have very similar tangential velocity fields and jet biasing. Both AM inlets created more uniform, slower velocity fields entering the diffuser. The results of this paper indicate large improvements in film cooling performance can be found by leveraging AM technology.


Author(s):  
Xi Zhang ◽  
Wenyuan Wu ◽  
Yanchun Gong ◽  
Suhong He ◽  
Fangping Wu ◽  
...  

Abstract The nonlocal effects of dimers consisted of two cylinders are studied, whose cross section is elliptical. Importantly, the results with dimers whose cross section is circular are compared. For comparison, the curvature of the ellipse is set the same with the circle, and four different geometries are considered. The electric field enhancement at the gap center and the absorption spectrum of the dimers are calculated. For the second geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the first geometry, the frequencies corresponding to the peaks are totally different. Similarly, for the fourth geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the third geometry, the disciplines of the peak values change as radius of curvature increases are totally different.


1974 ◽  
Vol 55 (S1) ◽  
pp. S66-S66
Author(s):  
J. G. Zornig ◽  
J. F. McDonald

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Matthew W. Kindig ◽  
Richard W. Kent

While a number of studies have quantified overall ribcage morphology (breadth, depth, kyphosis/lordosis) and rib cross-sectional geometry in humans, few studies have characterized the centroidal geometry of individual ribs. In this study, a novel model is introduced to describe the centroidal path of a rib (i.e., the sequence of centroids connecting adjacent cross-sections) in terms of several physically-meaningful and intuitive geometric parameters. Surface reconstructions of rib levels 2–10 from 16 adult male cadavers (aged 31–75 years) were first extracted from CT scans, and the centroidal path was calculated in 3D for each rib using a custom numerical method. The projection of the centroidal path onto the plane of best fit (i.e., the “in-plane” centroidal path) was then modeled using two geometric primitives (a circle and a semiellipse) connected to give C1 continuity. Two additional parameters were used to describe the deviation of the centroidal path from this plane; further, the radius of curvature was calculated at various points along the rib length. This model was fit to each of the 144 extracted ribs, and average trends in rib size and shape with rib level were reported. In general, upper ribs (levels 2–5) had centroidal paths which were closer to circular, while lower ribs (levels 6–10) tended to be more elliptical; further the centroidal curvature at the posterior extremity was less pronounced for lower ribs. Lower ribs also tended to exhibit larger deviations from the best-fit plane. The rib dimensions and trends with subject stature were found to be consistent with findings previously reported in the literature. This model addresses a critical need in the biomechanics literature for the accurate characterization of rib geometry, and can be extended to a larger population as a simple and accurate way to represent the centroidal shape of human ribs.


Author(s):  
Samuel D. Butler ◽  
Michael A. Marciniak ◽  
Mark F. Spencer ◽  
Ann Lanari

1986 ◽  
Author(s):  
G. M. Sanz ◽  
R. D. Flack

Secondary flows were experimentally examined in three 90° curved ducts with square cross sections and different radii of curvature. Dean numbers were from 1.5 × 104 to 3.6 × 104 and radius ratios of 0.5, 2.3, and 3.0 were used. Streak photography flow measurements were made and general developing secondary flow patterns were studied for three cross sections in each bend: the inlet (0° plane), the midpoint (45° plane), and the outlet (90° plane). At the 0° plane, stress driven secondary flows were found to consist of flow toward the duct corners from the center, balanced by return flow at the side bisectors. This resulted in eight symmetric flow patterns at the inlet. After a rapid transition region, the pressure driven secondary flow patterns were found to be characterized by flow moving toward the outer curved wall at the axial midplane and returning to the inner wall along the duct walls. At the 45° and 90° planes two symmetric flow patterns were observed. Secondary flow velocities in the test elbow with the smallest radius of curvature, where centrifugal forces are greater, were as much as 27% higher than secondary flows in the more gradual turns examined in this study. Also, the pressure driven secondary flows at the exit were higher than the stress driven flows at the inlet by as much as 39%. The elbow with a radius ratio of 0.5 was found to influence the upstream inlet conditions the most and the secondary flow velocities at the inlet were as much as 56% higher than for the larger radii of curvature.


2005 ◽  
Vol 475-479 ◽  
pp. 3231-3234 ◽  
Author(s):  
Moo Young Huh ◽  
Hyoung Jin Choi ◽  
J.H. Ok ◽  
Beong Bok Hwang ◽  
Bok Choon Kang

The dissimilar channel angular pressing (DCAP) process by rolling was numerically modeled and analyzed by the rigid-plastic two-dimensional finite element method in order to optimize the strain state of the DCAP process. Three distinct deformation mechanics during DCAP by rolling includes rolling, bending, and shearing. AA 1100 aluminum alloy was selected as a model material for the analysis of DCAP process. Difference in the friction conditions between the upper and lower roll surfaces led to large variation of shear strain component throughout the thickness of sample. Strain accompanying bending turned out to be negligible because of a large radius of curvature by relatively large roll diameter. The concentrated shear deformation was monitored at the corner of the DCAP-channel where the abrupt change in the direction of material flow occurred. The strain state at the upper and lower surfaces was observed to vary strongly from that of the center layer of the sheet.


2007 ◽  
Vol 2007 (0) ◽  
pp. _G203-1_-_G203-4_
Author(s):  
Hiroki MATSUMOTO ◽  
Ken-ichi SAITOH ◽  
Tetsuya YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document