A finsler-based result for the stability analysis of Takagi-Sugeno fuzzy models with interval time-varying delays

Author(s):  
Faycal Bourahala ◽  
Kevin Guelton
Author(s):  
WEI-LING CHIANG ◽  
CHENG-WU CHEN ◽  
FENG-HSIAG HSIAO

This paper is concerned with the stability problem of nonlinear interconnected systems. Each of them consists of a few interconnected subsystems which are approximated by Takagi–Sugeno (T–S) type fuzzy models. In terms of Lyapunov's direct method, a stability criterion is derived to guarantee the asymptotic stability of interconnected systems. It is shown that the stability analysis problems of nonlinear interconnected systems can be reduced to linear matrix inequality (LMI) problems via suitable Lyapunov functions and T–S fuzzy techniques. Finally, numerical examples with simulations are given to demonstrate the validity of the proposed approach.


Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
D. Santiago ◽  
E. Slawiñski ◽  
V. Mut

This paper analyzes the stability of a trilateral teleoperation system of a mobile robot. This type of system is nonlinear, time-varying, and delayed and includes a master-slave kinematic dissimilarity. To close the control loop, three P+d controllers are used under a position master/slave velocity strategy. The stability analysis is based on Lyapunov-Krasovskii theory where a functional is proposed and analyzed to get conditions for the control parameters that assure a stable behavior, keeping the synchronism errors bounded. Finally, the theoretical result is verified in practice by means of a simple test, where two human operators both collaboratively and simultaneously drive a 3D simulator of a mobile robot to achieve an established task on a remote shared environment.


2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


Sign in / Sign up

Export Citation Format

Share Document