High-speed object detection based on a hierarchical parallel vision chip

Author(s):  
Zhongxing Zhang ◽  
Jie Yang ◽  
Honglong Li ◽  
Liyuan Liu ◽  
Jian Liu ◽  
...  
2020 ◽  
Vol 49 (5) ◽  
pp. 20190553
Author(s):  
李鸿龙 Honglong Li ◽  
杨杰 Jie Yang ◽  
张忠星 Zhongxing Zhang ◽  
罗迁 Qian Luo ◽  
于双铭 Shuangming Yu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


Author(s):  
Runliang Tian ◽  
Hongmei Shi ◽  
Baoqing Guo ◽  
Liqiang Zhu

Author(s):  
Germán Mora Martín ◽  
Alex Turpin ◽  
Alice Ruget ◽  
Abderrahim Halimi ◽  
Robert Henderson ◽  
...  
Keyword(s):  

Author(s):  
Hang Gong ◽  
Shangdong Zheng ◽  
Zebin Wu ◽  
Yang Xu ◽  
Zhihui Wei ◽  
...  

The small defects in overhead catenary system (OCS) can result in long time delays, economic loss and even passenger injury. However, OCS images exhibit great variations with complex background and oblique views which pose a great challenge for small defects detection in high-speed rail system. In this paper, we propose the spatial-prior-guided attention for small object detection in OCS with two main advantages: (1) The spatial-prior is proposed to retain the spatial information between small defects and the electric components in OCS. (2) Based on spatial-prior, the spatial-prior-guided attention model (SAM) is designed to highlight useful information in the features and suppress redundant features response. SAM can model the spatial relations progressively and can be integrated with state-of-the-art feed-forward network architecture with end-to-end training fashion. We conduct extensive experiments on both Split pin datasets and PASCAL–VOC datasets and achieve 97.2% and 79.5% mAP values, respectively. All the experiments demonstrate the competitive performance of our method.


2019 ◽  
Vol 19 (10) ◽  
pp. 3818-3831 ◽  
Author(s):  
Jianquan Li ◽  
Xilong Liu ◽  
Fangfang Liu ◽  
De Xu ◽  
Qingyi Gu ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4744
Author(s):  
Hyukzae Lee ◽  
Jonghee Kim ◽  
Chanho Jung ◽  
Yongchan Park ◽  
Woong Park ◽  
...  

The arena fragmentation test (AFT) is one of the tests used to design an effective warhead. Conventionally, complex and expensive measuring equipment is used for testing a warhead and measuring important factors such as the size, velocity, and the spatial distribution of fragments where the fragments penetrate steel target plates. In this paper, instead of using specific sensors and equipment, we proposed the use of a deep learning-based object detection algorithm to detect fragments in the AFT. To this end, we acquired many high-speed videos and built an AFT image dataset with bounding boxes of warhead fragments. Our method fine-tuned an existing object detection network named the Faster R-convolutional neural network (CNN) on this dataset with modification of the network’s anchor boxes. We also employed a novel temporal filtering method, which was demonstrated as an effective non-fragment filtering scheme in our recent previous image processing-based fragment detection approach, to capture only the first penetrating fragments from all detected fragments. We showed that the performance of the proposed method was comparable to that of a sensor-based system under the same experimental conditions. We also demonstrated that the use of deep learning technologies in the task of AFT significantly enhanced the performance via a quantitative comparison between our proposed method and our recent previous image processing-based method. In other words, our proposed method outperformed the previous image processing-based method. The proposed method produced outstanding results in terms of finding the exact fragment positions.


Author(s):  
Angela Digulescu ◽  
Cindy Bernard ◽  
Elena Lungu ◽  
Ion Candel ◽  
Cornel Ioana
Keyword(s):  

2020 ◽  
Vol 12 (19) ◽  
pp. 3140
Author(s):  
Ruiqian Zhang ◽  
Zhenfeng Shao ◽  
Xiao Huang ◽  
Jiaming Wang ◽  
Deren Li

Object detection in Unmanned Aerial Vehicle (UAV) images plays fundamental roles in a wide variety of applications. As UAVs are maneuverable with high speed, multiple viewpoints, and varying altitudes, objects in UAV images are distributed with great heterogeneity, varying in size, with high density, bringing great difficulty to object detection using existing algorithms. To address the above issues, we propose a novel global density fused convolutional network (GDF-Net) optimized for object detection in UAV images. We test the effectiveness and robustness of the proposed GDF-Nets on the VisDrone dataset and the UAVDT dataset. The designed GDF-Net consists of a Backbone Network, a Global Density Model (GDM), and an Object Detection Network. Specifically, GDM refines density features via the application of dilated convolutional networks, aiming to deliver larger reception fields and to generate global density fused features. Compared with base networks, the addition of GDM improves the model performance in both recall and precision. We also find that the designed GDM facilitates the detection of objects in congested scenes with high distribution density. The presented GDF-Net framework can be instantiated to not only the base networks selected in this study but also other popular object detection models.


Sign in / Sign up

Export Citation Format

Share Document