A high speed programmable vision chip for real-time object detection

2020 ◽  
Vol 49 (5) ◽  
pp. 20190553
Author(s):  
李鸿龙 Honglong Li ◽  
杨杰 Jie Yang ◽  
张忠星 Zhongxing Zhang ◽  
罗迁 Qian Luo ◽  
于双铭 Shuangming Yu ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142093271
Author(s):  
Xiali Li ◽  
Manjun Tian ◽  
Shihan Kong ◽  
Licheng Wu ◽  
Junzhi Yu

To tackle the water surface pollution problem, a vision-based water surface garbage capture robot has been developed in our lab. In this article, we present a modified you only look once v3-based garbage detection method, allowing real-time and high-precision object detection in dynamic aquatic environments. More specifically, to improve the real-time detection performance, the detection scales of you only look once v3 are simplified from 3 to 2. Besides, to guarantee the accuracy of detection, the anchor boxes of our training data set are reclustered for replacing some of the original you only look once v3 prior anchor boxes that are not appropriate to our data set. By virtue of the proposed detection method, the capture robot has the capability of cleaning floating garbage in the field. Experimental results demonstrate that both detection speed and accuracy of the modified you only look once v3 are better than those of other object detection algorithms. The obtained results provide valuable insight into the high-speed detection and grasping of dynamic objects in complex aquatic environments autonomously and intelligently.


2011 ◽  
Vol 31 (8) ◽  
pp. 0828001
Author(s):  
付秋瑜 Fu Qiuyu ◽  
林清宇 Lin Qingyu ◽  
张万成 Zhang Wancheng ◽  
吴南健 Wu Nanjian

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rui Wang ◽  
Ziyue Wang ◽  
Zhengwei Xu ◽  
Chi Wang ◽  
Qiang Li ◽  
...  

Object detection is an important part of autonomous driving technology. To ensure the safe running of vehicles at high speed, real-time and accurate detection of all the objects on the road is required. How to balance the speed and accuracy of detection is a hot research topic in recent years. This paper puts forward a one-stage object detection algorithm based on YOLOv4, which improves the detection accuracy and supports real-time operation. The backbone of the algorithm doubles the stacking times of the last residual block of CSPDarkNet53. The neck of the algorithm replaces the SPP with the RFB structure, improves the PAN structure of the feature fusion module, adds the attention mechanism CBAM and CA structure to the backbone and neck structure, and finally reduces the overall width of the network to the original 3/4, so as to reduce the model parameters and improve the inference speed. Compared with YOLOv4, the algorithm in this paper improves the average accuracy on KITTI dataset by 2.06% and BDD dataset by 2.95%. When the detection accuracy is almost unchanged, the inference speed of this algorithm is increased by 9.14%, and it can detect in real time at a speed of more than 58.47 FPS.


2005 ◽  
Vol 17 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Yoshihiro Watanabe ◽  
◽  
Takashi Komuro ◽  
Shingo Kagami ◽  
Masatoshi Ishikawa

Real-time image processing at high frame rates could play an important role in various visual measurement. Such image processing can be realized by using a high-speed vision system imaging at high frame rates and having appropriate algorithms processed at high speed. We introduce a vision chip for high-speed vision and propose a multi-target tracking algorithm for the vision chip utilizing the unique features. We describe two visual measurement applications, target counting and rotation measurement. Both measurements enable excellent measurement precision and high flexibility because of high-frame-rate visual observation achievable. Experimental results show the advantages of vision chips compared with conventional visual systems.


Author(s):  
Zhongxing Zhang ◽  
Jie Yang ◽  
Honglong Li ◽  
Liyuan Liu ◽  
Jian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document