Detecting complex indels with wide length-spectrum from the third generation sequencing data

Author(s):  
Xuanping Zhang ◽  
Hengwei Chen ◽  
Rong Zhang ◽  
Jingwen Pei ◽  
Yixuan Wang ◽  
...  
BMC Genomics ◽  
2020 ◽  
Vol 21 (S10) ◽  
Author(s):  
Jiaqi Liu ◽  
Jiayin Wang ◽  
Xiao Xiao ◽  
Xin Lai ◽  
Daocheng Dai ◽  
...  

Abstract Background The emergence of the third generation sequencing technology, featuring longer read lengths, has demonstrated great advancement compared to the next generation sequencing technology and greatly promoted the biological research. However, the third generation sequencing data has a high level of the sequencing error rates, which inevitably affects the downstream analysis. Although the issue of sequencing error has been improving these years, large amounts of data were produced at high sequencing errors, and huge waste will be caused if they are discarded. Thus, the error correction for the third generation sequencing data is especially important. The existing error correction methods have poor performances at heterozygous sites, which are ubiquitous in diploid and polyploidy organisms. Therefore, it is a lack of error correction algorithms for the heterozygous loci, especially at low coverages. Results In this article, we propose a error correction method, named QIHC. QIHC is a hybrid correction method, which needs both the next generation and third generation sequencing data. QIHC greatly enhances the sensitivity of identifying the heterozygous sites from sequencing errors, which leads to a high accuracy on error correction. To achieve this, QIHC established a set of probabilistic models based on Bayesian classifier, to estimate the heterozygosity of a site and makes a judgment by calculating the posterior probabilities. The proposed method is consisted of three modules, which respectively generates a pseudo reference sequence, obtains the read alignments, estimates the heterozygosity the sites and corrects the read harboring them. The last module is the core module of QIHC, which is designed to fit for the calculations of multiple cases at a heterozygous site. The other two modules enable the reads mapping to the pseudo reference sequence which somehow overcomes the inefficiency of multiple mappings that adopt by the existing error correction methods. Conclusions To verify the performance of our method, we selected Canu and Jabba to compare with QIHC in several aspects. As a hybrid correction method, we first conducted a groups of experiments under different coverages of the next-generation sequencing data. QIHC is far ahead of Jabba on accuracy. Meanwhile, we varied the coverages of the third generation sequencing data and compared performances again among Canu, Jabba and QIHC. QIHC outperforms the other two methods on accuracy of both correcting the sequencing errors and identifying the heterozygous sites, especially at low coverage. We carried out a comparison analysis between Canu and QIHC on the different error rates of the third generation sequencing data. QIHC still performs better. Therefore, QIHC is superior to the existing error correction methods when heterozygous sites exist.


2021 ◽  
Author(s):  
Marek Kokot ◽  
Adam Gudys ◽  
Heng Li ◽  
Sebastian Deorowicz

The costs of maintaining exabytes of data produced by sequencing experiments every year has become a major issue in today's genomics. In spite of the increasing popularity of the third generation sequencing, the existing algorithms for compressing long reads exhibit minor advantage over general purpose gzip. We present CoLoRd, an algorithm able to reduce 3rd generation sequencing data by an order of magnitude without affecting the accuracy of downstream analyzes.


2020 ◽  
Vol 15 ◽  
Author(s):  
Hongdong Li ◽  
Wenjing Zhang ◽  
Yuwen Luo ◽  
Jianxin Wang

Aims: Accurately detect isoforms from third generation sequencing data. Background: Transcriptome annotation is the basis for the analysis of gene expression and regulation. The transcriptome annotation of many organisms such as humans is far from incomplete, due partly to the challenge in the identification of isoforms that are produced from the same gene through alternative splicing. Third generation sequencing (TGS) reads provide unprecedented opportunity for detecting isoforms due to their long length that exceeds the length of most isoforms. One limitation of current TGS reads-based isoform detection methods is that they are exclusively based on sequence reads, without incorporating the sequence information of known isoforms. Objective: Develop an efficient method for isoform detection. Method: Based on annotated isoforms, we propose a splice isoform detection method called IsoDetect. First, the sequence at exon-exon junction is extracted from annotated isoforms as the “short feature sequence”, which is used to distinguish different splice isoforms. Second, we aligned these feature sequences to long reads and divided long reads into groups that contain the same set of feature sequences, thereby avoiding the pair-wise comparison among the large number of long reads. Third, clustering and consensus generation are carried out based on sequence similarity. For the long reads that do not contain any short feature sequence, clustering analysis based on sequence similarity is performed to identify isoforms. Result: Tested on two datasets from Calypte Anna and Zebra Finch, IsoDetect showed higher speed and compelling accuracy compared with four existing methods. Conclusion: IsoDetect is a promising method for isoform detection. Other: This paper was accepted by the CBC2019 conference.


Author(s):  
E. S. Gribchenko

The transcriptome profiles the cv. Frisson mycorrhizal roots and inoculated nitrogen-fixing nodules were investigated using the Oxford Nanopore sequencing technology. A database of gene isoforms and their expression has been created.


2017 ◽  
Author(s):  
Krešimir Križanović ◽  
Ivan Sović ◽  
Ivan Krpelnik ◽  
Mile Šikić

AbstractNext generation sequencing technologies have made RNA sequencing widely accessible and applicable in many areas of research. In recent years, 3rd generation sequencing technologies have matured and are slowly replacing NGS for DNA sequencing. This paper presents a novel tool for RNA mapping guided by gene annotations. The tool is an adapted version of a previously developed DNA mapper – GraphMap, tailored for third generation sequencing data, such as those produced by Pacific Biosciences or Oxford Nanopore Technologies devices. It uses gene annotations to generate a transcriptome, uses a DNA mapping algorithm to map reads to the transcriptome, and finally transforms the mappings back to genome coordinates. Modified version of GraphMap is compared on several synthetic datasets to the state-of-the-art RNAseq mappers enabled to work with third generation sequencing data. The results show that our tool outperforms other tools in general mapping quality.


Sign in / Sign up

Export Citation Format

Share Document