Obstacle Detection and Path Planning Based On Monocular Vision for Unmanned Aerial Vehicles

Author(s):  
Changfeng Li ◽  
Xuefang Xie ◽  
Fei Luo
Author(s):  
Abdulla Al-Kaff ◽  
Qinggang Meng ◽  
David Martin ◽  
Arturo de la Escalera ◽  
Jose Maria Armingol

Author(s):  
Shubhankar Goje

Abstract: The growing industry of unmanned aerial vehicles (UAV) requires an efficient and robust algorithm to decide the path of the UAV and avoid obstacles. The study of pathfinding algorithms is ongoing research not just useful in the domain of drones, but in other fields like video games (AI pathfinding), terrain traversal (mapped, unmapped, areal, underwater, land, etc.), and industries that require robots to deliver packages. This paper proposes a new pathfinding algorithm that aims to solve the problem of pathfinding in unknown 2-dimensional terrain. Based on a system of assumptions and using the help of a set of sensors aboard the UAV, the algorithm navigates the UAV from a start point to an endpoint while avoiding any shape or size of obstacles in between. To avoid multiple different types of “infinite loop” situations where the UAV gets stuck around an obstacle, a priority-based selector for intermediate destinations is created. The algorithm is found to work effectively when simulated in Gazebo on Robot Operating System (ROS). Keywords: Path Planning, UAV, Obstacle Avoidance, Drone Navigation, Obstacle Detection, Uncharted Environment.


2010 ◽  
Author(s):  
Antonios Tsourdos ◽  
Brian White ◽  
Madhavan Shanmugavel

Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.


Author(s):  
Kai Yit Kok ◽  
Parvathy Rajendran

This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.


Sign in / Sign up

Export Citation Format

Share Document