A New Global Routing Optimization Algorithm based on Pigeon Inspired Optimization

Author(s):  
Subhrapratim Nath ◽  
Rabiraj Bandyopadhyay ◽  
Saptarshi Biswas ◽  
Jamuna Kanta Sing ◽  
Subir Kumar Sarkar
Author(s):  
Muhammad Aamir Panhwar ◽  
Deng Zhong Liang ◽  
Kamran Ali Memon ◽  
Sijjad Ali Khuhro ◽  
Muhammad Aashed Khan Abbasi ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1876 ◽  
Author(s):  
Weimin Chen ◽  
Zhigang Chen ◽  
Fang Cui

The appearance of a large number of mobile intelligent devices boosts the fast rise of mobile health (mHealth) application. However, due to the sensitivity and complexity of medical data, an efficient and secure mobile communication mode is a very difficult and challenging task in mHealth. The Opportunistic Networks (OppNets) is self-organizing and can expand the communication capacity by the movement of nodes, so it has a good prospect in the application of mHealth. Unfortunately, due to the shortage of stable and reliable end-to-end links, the routing protocol in OppNets has usually lower performance and is unsafe. To address these issues, we propose an adaptive routing optimization algorithm in OppNets for mHealth. This routing scheme firstly analyzes the relationship between nodes and defines the average message forwarding delay as a new metric to selectively forward messages, and then designs a local community detection algorithm based on the metric to adapt to the characteristics of OppNets, and finally resorts to some super-nodes to ferry messages between different communication domains. The simulation results demonstrate the efficiency and effectiveness of the proposed scheme. It increases the delivery ratio by about 30%, decreases delay by about 35%, and decreases the number of forwarding by about 5%, by comparing it with several existing routing schemes. We believe that the relationship between nodes, community, and message ferrying will play an important role in routing of OppNets for mHealth.


Author(s):  
Helong Wang ◽  
Wengang Mao ◽  
Leif Eriksson

Safety and energy efficiency are two of the key issues in the maritime transport community. A sail plan system, which combines the concepts of weather routing and voyage optimization, are recognized by the shipping industry as an efficient measure to ensure a ship’s safety, gain more economic benefit, and reduce negative effects on our environment. In such a system, the key component is to develop a proper optimization algorithm to generate potential ship routes between a ship’s departure and destination. In the weather routing market, four routing optimization algorithms are commonly used. They are the so-called modified Isochrone and Isopone methods, dynamic programming, threedimensional dynamic programming, and Dijkstra’s algorithm, respectively. Each optimization algorithm has its own advantages and disadvantages to estimate a ship routing with shortest sailing time or/and minimum fuel consumption. This paper will present a benchmark study that compare these algorithms for routing optimization aiming at minimum fuel consumption. A merchant ship sailing in the North Atlantic with full-scale performance measurements, are employed as the case study vessels for the comparison. The ship’s speed/power performance is based on the ISO2015 methods combined with the measurement data. It is expected to demonstrate the pros and cons of different algorithms for the ship’s sail planning.


Sign in / Sign up

Export Citation Format

Share Document