Analysis of Shaft Alignment Fault of Asynchronous Motors by Current Signature Method

Author(s):  
Istvan Bendiak
Author(s):  
Anne E. Gattiker ◽  
Phil Nigh ◽  
Wojciech Maly

Abstract This article provides an analysis of a class of failures observed during the SEMATECH-sponsored Test Methods Experiment. The analysis focuses on use of test-based failure analysis and IDDQ signature analysis to gain insight into the physical mechanisms underlying such subtle failures. In doing so, the analysis highlights techniques for understanding failure mechanisms using only tester data. In the experiment, multiple test methods were applied to a 0.45 micrometer effective channel length ASIC. Specifically, ICs that change test behavior from before to after burn-in are studied to understand the physical nature of the mechanism underlying their failure. Examples of the insights provided by the test-based analysis include identifying cases where there are multiple or complex defects and distinguishing cases where the defect type is likely to be a short versus an open and determining if the defect is marginal. These insights can be helpful for successful failure analysis.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4514
Author(s):  
Vincent Becker ◽  
Thilo Schwamm ◽  
Sven Urschel ◽  
Jose Alfonso Antonino-Daviu

The growing number of variable speed drives (VSDs) in industry has an impact on the future development of condition monitoring methods. In research, more and more attention is being paid to condition monitoring based on motor current evaluation. However, there are currently only a few contributions to current-based pump diagnosis. In this paper, two current-based methods for the detection of bearing defects, impeller clogging, and cracked impellers are presented. The first approach, load point-dependent fault indicator analysis (LoPoFIA), is an approach that was derived from motor current signature analysis (MCSA). Compared to MCSA, the novelty of LoPoFIA is that only amplitudes at typical fault frequencies in the current spectrum are considered as a function of the hydraulic load point. The second approach is advanced transient current signature analysis (ATCSA), which represents a time-frequency analysis of a current signal during start-up. According to the literature, ATCSA is mainly used for motor diagnosis. As a test item, a VSD-driven circulation pump was measured in a pump test bench. Compared to MCSA, both LoPoFIA and ATCSA showed improvements in terms of minimizing false alarms. However, LoPoFIA simplifies the separation of bearing defects and impeller defects, as impeller defects especially influence higher flow ranges. Compared to LoPoFIA, ATCSA represents a more efficient method in terms of minimizing measurement effort. In summary, both LoPoFIA and ATCSA provide important insights into the behavior of faulty pumps and can be advantageous compared to MCSA in terms of false alarms and fault separation.


Author(s):  
Samuel A. Howard

As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.


Sign in / Sign up

Export Citation Format

Share Document