Challenges in modern wireless optical communication systems — Free space optics: Data flow control in FSO monitoring system

Author(s):  
Jan Toth ◽  
Lubos Ovsenik ◽  
Jan Turan
Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1261
Author(s):  
Renát Haluška ◽  
Peter Šuľaj ◽  
Ľuboš Ovseník ◽  
Stanislav Marchevský ◽  
Ján Papaj ◽  
...  

This study deals with the problem of fiber-free optical communication systems—known as free space optics—using received signal strength identifier (RSSI) prediction analysis for hard switching of optical fiber-free link to base radio-frequency (RF) link and back. Adverse influences affecting the atmospheric transmission channel significantly impair optical communications, therefore attention was paid to the practical design, as well as to the implementation of the monitoring device that is used to record and process weather information along a transmission path. The article contains an analysis and methodology of the solution of the high availability of the optical link. Attention was paid to the technique of hard free space optics (FSO)/RF-switching with regard to the amount of received optical power detected and its relation to the quantities influencing the optical communication line. For this purpose, selected methods of machine learning were used, which serve to predict the received optical power. The process of analysis of prediction of received optical power is realized by regression models. The study presents the design of the optimal data input matrix model, which forms the basis for the training of the prediction models for estimating the received optical power.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Gebrehiwet Gebrekrstos Lema

AbstractFree Space Optics (FSO) communication provides attractive bandwidth enhancement with unlicensed bands worldwide spectrum. However, the link capacity and availability are the major concern in the different atmospheric conditions. The reliability of the link is highly dependent on weather conditions that attenuate the signal strength. Hence, this study focuses to mitigate the weather and geographic effects using iterative optimization on FSO communication. The optimization maximizes the visibility distance while guaranteeing the reliability by minimizing the Bit Error Rate (BER). The wireless optical communication system is designed for the data rate of 10 Gbps. The performance of the proposed wireless optical communication is compared against the literature in terms of visibility distance, quality factor, BER, and Eye diagram at different atmospheric conditions. The simulation results have shown that the proposed work has achieved better performance.


2019 ◽  
Vol 28 (1) ◽  
pp. 224-231
Author(s):  
Randa S. Hammad ◽  
El_Sayed M. El_Rabaie ◽  
Fathi. E. Abd-El-Samie ◽  
Ibrahim M. El-Dokany

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Samir A. Al-Gailani ◽  
Mohd Fadzli Mohd Salleh ◽  
Ali A. Salem ◽  
Redhwan Q. Shaddad ◽  
Usman Ullah Sheikh ◽  
...  

2008 ◽  
Vol 5 (1) ◽  
pp. 95-100
Author(s):  
Baghdad Science Journal

In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).


Sign in / Sign up

Export Citation Format

Share Document