Mining atmospheric data

Author(s):  
Chaabane Djeraba ◽  
Jerome Riedi
Keyword(s):  
2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


1992 ◽  
Vol 28 (2) ◽  
pp. 193-194
Author(s):  
M.A. Pedder

Author(s):  
Therese Rieckh ◽  
Jeremiah P. Sjoberg ◽  
Richard A. Anthes

AbstractWe apply the three-cornered hat (3CH) method to estimate refractivity, bending angle, and specific humidity error variances for a number of data sets widely used in research and/or operations: radiosondes, radio occultation (COSMIC, COSMIC-2), NCEP global forecasts, and nine reanalyses. We use a large number and combinations of data sets to obtain insights into the impact of the error correlations among different data sets that affect 3CH estimates. Error correlations may be caused by actual correlations of errors, representativeness differences, or imperfect co-location of the data sets. We show that the 3CH method discriminates among the data sets and how error statistics of observations compare to state-of-the-art reanalyses and forecasts, as well as reanalyses that do not assimilate satellite data. We explore results for October and November 2006 and 2019 over different latitudinal regions and show error growth of the NCEP forecasts with time. Because of the importance of tropospheric water vapor to weather and climate, we compare error estimates of refractivity for dry and moist atmospheric conditions.


Author(s):  
Avery Sanford ◽  
Marcela Lopez ◽  
Jarod Johnson ◽  
Austin Dennis ◽  
Lindsey Meyers ◽  
...  

2014 ◽  
Vol 119 (5) ◽  
pp. 2279-2293 ◽  
Author(s):  
Eun-Chul Chang ◽  
Sang-Wook Yeh ◽  
Song-You Hong ◽  
Jung-Eun Kim ◽  
Renguang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document