Controller design for sine wave tracking on magnetic levitation system: A comparative simulation study

Author(s):  
C.-S. Teodorescu ◽  
N. Sakamoto ◽  
S. Olaru
2013 ◽  
Vol 341-342 ◽  
pp. 945-948 ◽  
Author(s):  
Wei Zhou ◽  
Bao Bin Liu

In view of parameter uncertainty in the magnetic levitation system, the adaptive controller design problem is investigated for the system. Nonlinear adaptive controller based on backstepping is proposed for the design of the actual system with parameter uncertainty. The controller can estimate the uncertainty parameter online so as to improve control accuracy. Theoretical analysis shows that the closed-loop system is stable regardless of parameter uncertainty. Simulation results demonstrate the effectiveness of the presented method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Fernando Gómez-Salas ◽  
Yongji Wang ◽  
Quanmin Zhu

This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2135
Author(s):  
Waldemar Bauer ◽  
Jerzy Baranowski

Currently, there are no formalized methods for tuning non-integer order controllers. This is due to the fact that implementing these systems requires using an approximation of the non-integer order terms. The Oustaloup approximation method of the sα fractional derivative is intuitive and widely adopted in the design of fractional-order PIλD controllers. It requires special considerations for real-time implementations as it is prone to numerical instability. In this paper, for design and tuning of fractional regulators, we propose two methods.The first method relies on Nyquist stability criterion and stability margins. We base the second on parametric optimization via Simulated Annealing of multiple performance indicators. We illustrate our methods with a case study of the PIλD controller for the Magnetic Levitation System. We illustrate our methods’ efficiency with both simulations and experimental verification in both nominal and disturbed operation.


Sign in / Sign up

Export Citation Format

Share Document