Consensus of double-integrator discrete-time multi-agent system based on second-order neighbors' information

Author(s):  
Huan Pan ◽  
Wenjuan Qiao
2018 ◽  
Vol 51 (1) ◽  
pp. 586-591 ◽  
Author(s):  
Venkata Karteek Yanumula ◽  
Indrani Kar ◽  
Somanath Majhi

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangping Hu ◽  
Yulong Zhou ◽  
Yunsong Lin

Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.


2016 ◽  
Vol 40 (2) ◽  
pp. 504-513 ◽  
Author(s):  
Lei Chen ◽  
Kaiyu Qin ◽  
Jiangping Hu

In this paper, we investigate a tracking control problem for second-order multi-agent systems. Here, the leader is self-active and cannot be completely measured by all the followers. The interaction network associated with the leader–follower multi-agent system is described by a jointly connected topology, where the topology switches over time and is not strongly connected during each time subinterval. We consider a consensus control of the multi-agent system with or without time delay and propose two categories of neighbour-based control rules for every agent to track the leader, then provide sufficient conditions to ensure that all agents follow the leader, and meanwhile, the tracking errors can be estimated. Finally, some simulation results are presented to demonstrate our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document