The influence of material on the performance of permanent magnet eddy current speed-control device

Author(s):  
Linxin Yu ◽  
Dazhi Wang ◽  
Jiaju Chang ◽  
Shuo Li ◽  
Xian Wang ◽  
...  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2009 ◽  
Vol 129 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Katsumi Yamazaki ◽  
Yuji Kanou ◽  
Yu Fukushima ◽  
Shunji Ohki ◽  
Akira Nezu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3549
Author(s):  
Pham Quoc Khanh ◽  
Viet-Anh Truong ◽  
Ho Pham Huy Anh

The paper proposes a new speed control method to improve control quality and expand the Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors (PMSM) speed range enlarging is based on the newly proposed power control principle between two voltage sources instead of winding current control as the conventional Field Oriented Control method. The power management between the inverter and PMSM motor allows the Flux-Weakening obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant power range. Based on motor power control, a new control method is proposed and allows for efficiently reducing current and torque ripple caused by the imbalance between the power supply of the inverter and the power required through the desired stator current. The proposed method permits for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The simulation results have demonstrated the efficiency and stability of the proposed control method.


2019 ◽  
Vol 87 ◽  
pp. 01030 ◽  
Author(s):  
Suresh Kumar Tummala ◽  
Dhasharatha G

The advancement of industry apparatuses for some methods with specific tasks to control the working of a few actuators on the field. Among these actuators, Permanent magnet synchronous motor drives are a mainly all-inclusive machine. Proficient utilization of hesitance torque, generally effectiveness, minor misfortunes and smaller size of the motor are the principle attractions of PMSM when contrasted and different drivers. Precise and rapid torque reaction is one of the parameters to determine differentiating arrangements in the ongoing past. The field-situated power perceived the likely and vigorous answer to accomplish these prerequisites to empower the figuring of streams and voltages in different parts of the inverter and motor under transient and consistent conditions. The primary objective of this paper is to investigate Artificial Neural Network based control of speed for PMSM in both open and closed loop under no-load and loaded condition. A shut circle control framework with ANN procedure in the speed circle intended to work in steady torque and transition debilitating districts. MATLAB reproduction performed in the wake of preparing the neural system (directed learning), results for reference control applications are adequate and appropriate in the process business. Speed control in shut circle at different stacking conditions talked about in detail.


Sign in / Sign up

Export Citation Format

Share Document