Performance analysis of magnetic gear with Halbach array for high power and high speed

2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.

2017 ◽  
Vol 66 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Hongbo Qiu ◽  
Wenfei Yu ◽  
Yonghui Li ◽  
Cunxiang Yang

AbstractAt present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM). A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM), the motor temperature distribution with different harmonics was obtained.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135675-135685 ◽  
Author(s):  
Hamid Ali Khan ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Jong-Suk Ro

Author(s):  
Xu Liu

The eddy current loss should be optimized to be as less as possible for the stability of permanent magnet in high speed permanent magnet synchronous motor (HSPMSM) rotor and ensure the high efficiency and low temperature of the motor. This paper analyzes the eddy current distribution in rotor, with consideration of the conflict of the thickness of sleeve and diameter of the rotor, calculating the eddy current loss (ECL) and the thermal distribution via Separation of variables method for solving Maxwell's equations with analytical hieratical model of ECL constructed. The optimization result of ECL of the HSPMSM whose power and rated speed is 30kw 48000r/min can be got by multi-objective optimization method, combined weighting coefficient method and traversal algorithm based on chaotic local search particle swarm optimization (CLSPSO), utilizing ECL analytical model and other analytical constraints. Related experiment and measurement has been implemented with new approach of loss separation.


Sign in / Sign up

Export Citation Format

Share Document