Triangular Type-2 Fuzzy Sets Based Weighted Regularized Extreme Learning Algorithm

Author(s):  
Guoliang Zhao ◽  
Wei Wu
2012 ◽  
Vol 198-199 ◽  
pp. 261-266
Author(s):  
Yang Chen ◽  
Tao Wang

This paper first gives the definition of interval type-2 fuzzy sets,then investigates interval type-2 interpolative fuzzy reasoning under Triangular type membership functions. Two interpolative fuzzy reasoning algorithms responding to interval type-2 fuzzy inference models in the line of type-1 interpolative fuzzy reasoning algorithms are proposed.


2021 ◽  
pp. 1-28
Author(s):  
Ashraf Norouzi ◽  
Hossein Razavi hajiagha

Multi criteria decision-making problems are usually encounter implicit, vague and uncertain data. Interval type-2 fuzzy sets (IT2FS) are widely used to develop various MCDM techniques especially for cases with uncertain linguistic approximation. However, there are few researches that extend IT2FS-based MCDM techniques into qualitative and group decision-making environment. The present study aims to adopt a combination of hesitant and interval type-2 fuzzy sets to develop an extension of Best-Worst method (BWM). The proposed approach provides a flexible and convenient way to depict the experts’ hesitant opinions especially in group decision-making context through a straightforward procedure. The proposed approach is called IT2HF-BWM. Some numerical case studies from literature have been used to provide illustrations about the feasibility and effectiveness of our proposed approach. Besides, a comparative analysis with an interval type-2 fuzzy AHP is carried out to evaluate the results of our proposed approach. In each case, the consistency ratio was calculated to determine the reliability of results. The findings imply that the proposed approach not only provides acceptable results but also outperforms the traditional BWM and its type-1 fuzzy extension.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1217
Author(s):  
Nicolò Bellin ◽  
Erica Racchetti ◽  
Catia Maurone ◽  
Marco Bartoli ◽  
Valeria Rossi

Machine Learning (ML) is an increasingly accessible discipline in computer science that develops dynamic algorithms capable of data-driven decisions and whose use in ecology is growing. Fuzzy sets are suitable descriptors of ecological communities as compared to other standard algorithms and allow the description of decisions that include elements of uncertainty and vagueness. However, fuzzy sets are scarcely applied in ecology. In this work, an unsupervised machine learning algorithm, fuzzy c-means and association rules mining were applied to assess the factors influencing the assemblage composition and distribution patterns of 12 zooplankton taxa in 24 shallow ponds in northern Italy. The fuzzy c-means algorithm was implemented to classify the ponds in terms of taxa they support, and to identify the influence of chemical and physical environmental features on the assemblage patterns. Data retrieved during 2014 and 2015 were compared, taking into account that 2014 late spring and summer air temperatures were much lower than historical records, whereas 2015 mean monthly air temperatures were much warmer than historical averages. In both years, fuzzy c-means show a strong clustering of ponds in two groups, contrasting sites characterized by different physico-chemical and biological features. Climatic anomalies, affecting the temperature regime, together with the main water supply to shallow ponds (e.g., surface runoff vs. groundwater) represent disturbance factors producing large interannual differences in the chemistry, biology and short-term dynamic of small aquatic ecosystems. Unsupervised machine learning algorithms and fuzzy sets may help in catching such apparently erratic differences.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Sign in / Sign up

Export Citation Format

Share Document