ADRC-based Control of Pan-tilt System for Automated Vehicle Sensors

Author(s):  
Chao Sun ◽  
Jianghao Leng ◽  
Sifan Wang ◽  
Li Qi
2020 ◽  
Author(s):  
Joachim Taiber ◽  

Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat to connected and automated vehicle technologies? What steps and measures are needed to make a V2X ecosystem “quantum-safe?” What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective?


2021 ◽  
Vol 13 (5) ◽  
pp. 2905
Author(s):  
Wei Zhao ◽  
Tianxin Li ◽  
Bozhao Qi ◽  
Qifan Nie ◽  
Troy Runge

Precision agriculture aims to use minimal inputs to generate maximal yields by managing the plant and its environment at a discrete instead of a field level. This new farming methodology requires localized field data including topological terrain attributes, which influence irrigation, field moisture, nutrient runoff, soil compaction, and traction and stability for traversing agriculture machines. Existing research studies have used different sensors, such as distance sensors and cameras, to collect topological information, which may be constrained by energy cost, performance, price, etc. This study proposed a low-cost method to perform farmland topological analytics using sensor implementation and data processing. Inertial measurement unit sensors, which are widely used in automated vehicle study, and a camera are set up on a robot vehicle. Then experiments are conducted under indoor simulated environments that include five common topographies that would be encountered on farms, combined with validation experiments in a real-world field. A data fusion approach was developed and implemented to track robot vehicle movements, monitor the surrounding environment, and finally recognize the topography type in real time. The resulting method was able to clearly recognize topography changes. This low-cost and easy-mount method will be able to augment and calibrate existing mapping algorithms with multidimensional information. Practically, it can also achieve immediate improvement for the operation and path planning of large agricultural machines.


Author(s):  
Varun Kumar ◽  
Lakshya Gaur ◽  
Arvind Rehalia

In this paper the authors have explained the development of robotic vehicle prepared by them, which operates autonomously and is not controlled by the users, except for selection of modes. The different modes of the automated vehicle are line following, object following and object avoidance with alternate trajectory determination. The complete robotic assembly is mounted on a chassis comprising of Arduino Uno, Servo motors, HC-SRO4 (Ultrasonic sensor), DC motors (Geared), L293D Motor Driver, IR proximity sensors, Voltage Regulator along with castor wheel and two normal wheels.


2020 ◽  
Vol 53 (2) ◽  
pp. 8118-8123
Author(s):  
Teawon Han ◽  
Subramanya Nageshrao ◽  
Dimitar P. Filev ◽  
Ümit Özgüner

Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Johannes Ossig ◽  
Stephanie Cramer ◽  
Klaus Bengler

In the human-centered research on automated driving, it is common practice to describe the vehicle behavior by means of terms and definitions related to non-automated driving. However, some of these definitions are not suitable for this purpose. This paper presents an ontology for automated vehicle behavior which takes into account a large number of existing definitions and previous studies. This ontology is characterized by an applicability for various levels of automated driving and a clear conceptual distinction between characteristics of vehicle occupants, the automation system, and the conventional characteristics of a vehicle. In this context, the terms ‘driveability’, ‘driving behavior’, ‘driving experience’, and especially ‘driving style’, which are commonly associated with non-automated driving, play an important role. In order to clarify the relationships between these terms, the ontology is integrated into a driver-vehicle system. Finally, the ontology developed here is used to derive recommendations for the future design of automated driving styles and in general for further human-centered research on automated driving.


Author(s):  
Mohammad Rabeul Hasan ◽  
Hasan al Banna ◽  
Md Rayhan ◽  
Shafayat Hossain ◽  
Md. Iquebal Hossain Patwary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document