A Novel Earthquake Warning System Based on Virtual MIMO-Wireless Sensor Networks

Author(s):  
M. Youssef ◽  
A. Yousif ◽  
N. El-Sheimy ◽  
A. Noureldin
2013 ◽  
Vol 427-429 ◽  
pp. 1268-1271
Author(s):  
Xue Wen He ◽  
Ying Fei Sheng ◽  
Kuan Gang Fan ◽  
Le Ping Zheng ◽  
Qing Mei Cao

In view of the existing flaws of traditional manual observations, a new type of tailing reservoir safety monitoring and warning system based on ZigBee and LabVIEW was designed. The system chose SoC chip CC2530 as the RF transceiver and designed the low-power wireless sensor networks nodes to collect and process the data of tailing reservoir. It chose ZigBee 2007 as the network communication protocol, and uploaded the data to PC by RS232 serial port. The monitoring and warning interface of PC was completed with LabVIEW. The testing results show that the data transmission of the network is stable and the system is suitable for real-time monitoring and warning of the tungsten tailing reservoir.


2012 ◽  
pp. 944-966
Author(s):  
Laxminarayana S. Pillutla ◽  
Vikram Krishnamurthy

This chapter considers the problem of data gathering in correlated wireless sensor networks with distributed source coding (DSC), and virtual multiple input and multiple output (MIMO) based cooperative transmission. Using the concepts of super and sub modularity on a lattice, we analytically quantify as how the optimal constellation size, and optimal number of cooperating nodes, vary with respect to the correlation coefficient. In particular, we show that the optimal constellation size is an increasing function of the correlation coefficient. For the virtual MIMO transmission case, the optimal number of cooperating nodes is a decreasing function of the correlation coefficient. We also prove that in a virtual MIMO based transmission scheme, the optimal constellation size adopted by each cooperating node is a decreasing function of number of cooperating nodes. Also it is shown that, the optimal number of cooperating nodes is a decreasing function of the constellation size adopted by each cooperating node. We also study numerically that for short distance ranges, SISO transmission achieves better energy-mutual information (MI) tradeoff. However, for medium and large distance ranges, the virtual MIMO transmission achieves better energy-MI tradeoff.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianpo Li ◽  
Xue Jiang ◽  
I-Tai Lu

Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.


Sign in / Sign up

Export Citation Format

Share Document