The probability of false alarm of the cross-spectrum based detector for a two-channel interferometer

Author(s):  
Sichun Wang ◽  
Robert Inkol
2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


2018 ◽  
Vol 144 ◽  
pp. 201-215
Author(s):  
Natthanan Promsuk ◽  
Attaphongse Taparugssanagorn ◽  
Johanna Vartiainen

1992 ◽  
Vol 82 (6) ◽  
pp. 2283-2307
Author(s):  
E. H. Field ◽  
K. H. Jacob ◽  
S. E. Hough

Abstract Using weak-motion recordings of aftershocks of the 1989 Loma Prieta earthquake recorded in Oakland, California, near the failed Nimitz Freeway, two methods have been applied to estimate the site response of an alluvium site and three mud-over-alluvium sites. The first estimate is the traditional spectral ratio, and the second utilizes the cross spectrum. Recordings obtained at a nearby bedrock site are used as estimates of the sediment site input motions. While the two site response estimates produce similar peaks and troughs, there is an approximate factor of 2 difference in amplitudes. This discrepancy is evidence that there is a much greater level of noise than would be expected from the pre-event ambient noise. We interpret this as signal-generated noise produced by scattering from heterogeneities, which causes the true sediment site input to differ significantly from the bedrock site recording. Given this level of noise, the cross-spectrum estimate suffers a severe downward bias (by a factor of 2 in this study) and should probably not be used when the input motion is estimated from a bedrock site recording. The spectral-ratio estimates are relatively unbiased, but the level of noise introduces a large degree of uncertainty. Therefore, inferences about site response from individual spectral ratios should probably be avoided. On the other hand, ensemble averages of the estimates significantly reduce the scatter to reveal resonances that agree quite well in frequency and overall shape with those of one-dimensional models whose parameters were determined independently. A discrepancy of higher observed amplitudes than predicted by theory remains unexplained but most likely results from the effects of boundary layer topography, which are not accounted for by the simple one-dimensional models.


Author(s):  
Swetha Reddy ◽  
Isaac Cushman ◽  
Danda B. Rawat ◽  
Min Song

The popularity of cloud-assisted database-driven cognitive radio network (CRN) has increased significantly due to three main reasons; reduced sensing uncertainties (caused by the use of spectrum scanning and sensing techniques), FCC mandated use of a database for storing and utilizing idle channels, and leveraging cloud computing platform to process big data generated by wideband sensing and analyzing. In database-driven CRN, secondary users periodically query the database to find idle channels for opportunistic communications where secondary users use their geolocation (with the help of Global Positioning System - GPS) to find idle channels for given location and time. Use of GPS makes the overall CRN vulnerable where malicious users falsify their geolocations through GPS spoofing to find more channels. The other main drawback of GPS is estimation error while finding location of users and idle bands. Due to this there will be probability of misdetection and false alarm which will have its effect on overall performance and efficiency of the system. In this paper, the authors present a three-stage mechanism for detecting GPS spoofing attacks using angle of arrival, received signal strength and time of arrival. They also evaluate the probability of misdetection and probability of false alarm in this system while detecting location of secondary users. The authors evaluate the performance of the proposed approach using numerical results.


1994 ◽  
Vol 158 ◽  
pp. 197-200
Author(s):  
J.-L. Monin ◽  
N. Ageorges ◽  
L. Desbat ◽  
C. Perrier

A new method to reconstruct the phase of bidimensional interferograms, obtained through pupil-plane interferometry is presented. We compute the average complex phasor components of the cross-spectrum on a data set to reconstruct the original unperturbed phase. We present preliminary results on simulated images which visibility phases are distorted using a model of atmospheric perturbed wavefronts.


1995 ◽  
Vol 88 (6) ◽  
pp. 651-655 ◽  
Author(s):  
Michel Ducher ◽  
Jean Pierre Fauvel ◽  
Marie Paule Gustin ◽  
Catherine Cerutti ◽  
Robert Najem ◽  
...  

1. A new method was developed to evaluate cardiac baroreflex sensitivity. The association of a high systolic blood pressure with a low heart rate or the converse is considered to be under the influence of cardiac baroreflex activity. This method is based on the determination of the statistical dependence between systolic blood pressure and heart rate values obtained non-invasively by a Finapres device. Our computerized analysis selects the associations with the highest statistical dependence. A ‘Z-coefficient’ quantifies the strength of the statistical dependence. The slope of the linear regression, computed on these selected associations, is used to estimate baroreflex sensitivity. 2. The present study was carried out in 11 healthy resting male subjects. The results obtained by the ‘Z-coefficient’ method were compared with those obtained by cross-spectrum analysis, which has already been validated in humans. Furthermore, the reproducibility of both methods was checked after 1 week. 3. The results obtained by the two methods were significantly correlated (r = 0.78 for the first and r = 0.76 for the second experiment, P < 0.01). When repeated after 1 week, the average results were not significantly different. Considering individual results, test—retest correlation coefficients were higher with the Z-analysis (r = 0.79, P < 0.01) than with the cross-spectrum analysis (r = 0.61, P < 0.05). 4. In conclusion, as the Z-method gives results similar to but more reproducible than the cross-spectrum method, it might be a powerful and reliable tool to assess baroreflex sensitivity in humans.


Sign in / Sign up

Export Citation Format

Share Document