Efficient Disk I/O Scheduling with QoS Guarantee for Xen-based Hosting Platforms

Author(s):  
Xiao Ling ◽  
Hai Jin ◽  
Shadi Ibrahim ◽  
Wenzhi Cao ◽  
Song Wu
Keyword(s):  
2014 ◽  
Vol 36 (7) ◽  
pp. 1399-1412
Author(s):  
Ji-Yan WU ◽  
Xiu-Quan QIAO ◽  
Bo CHENG ◽  
Jun-Liang CHEN ◽  
Yun-Lei SUN

AFRICON 2007 ◽  
2007 ◽  
Author(s):  
Oladayo Salami ◽  
H. Anthony Chan ◽  
Mqhele E. Dlodlo

Author(s):  
Francesco Lucrezia ◽  
Guido Marchetto ◽  
Fulvio Risso ◽  
Michele Santuari ◽  
Matteo Gerola

This paper describes a framework application for the control plane of a network infrastructure; the objective is to feature end-user applications with the capability of requesting at any time a customised end-to-end Quality-of-Service profile in the context of dynamic Service-Level-Agreements. Our solution targets current and future real-time applications that require tight QoS parameters, such as a guaranteed end-to-end delay bound. These applications include, but are not limited to, health-care, mobility, education, manufacturing, smart grids, gaming and much more. We discuss the issues related to the previous Integrated Service and the reason why the RSVP protocol for guaranteed QoS did not take off. Then we present a new signaling and resource reservation framework based on the cutting-edge network controller ONOS.  Moreover, the presented system foresees the need of considering the edges of the network, where terminal applications are connected to, to be piloted by distinct logically centralised controllers. We discuss a possible inter-domain communication mechanism to achieve the end-to-end QoS guarantee.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Xintian Hu ◽  
Liqian Wang ◽  
Zhiguo Zhang ◽  
Xue Chen

Energy consumption in optical access networks costs carriers substantial operational expense (OPEX) every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON), a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs) can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS) guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain.


Sign in / Sign up

Export Citation Format

Share Document