Fast & Energy Efficient Binary to BCD Converter with Complement Based Logic Design (CBLD) for BCD Multipliers

Author(s):  
Ashish Joshi ◽  
Srirathan Rangisetti ◽  
Priyanka Lohray ◽  
Tooraj Nikoubin
2017 ◽  
Vol 27 (03) ◽  
pp. 1850046 ◽  
Author(s):  
Sadulla Shaik ◽  
K. Sri Rama Krishna ◽  
Ramesh Vaddi

Tunnel field-effect transistors (TFETs) as low voltage device options have attracted recent attention for energy efficient circuit designs with CMOS technology scaling. This paper presents the circuit and architectural co-design approach for designing reliable and energy efficient architectures (adder cells) for new computing platforms at supply voltages. At circuit level TFET-based 28-transistor static logic design (28T) and 24-transistor transmission gate logic design (24T) have been explored. At architectural level, multiplexer (MUX)-based 22-transistor full adder design (22T) is proposed. Performance of TFET-based architectures have also been benchmarked with 20[Formula: see text]nm double gate Si FinFET technology. It has been seen that with FinFET technology 24T design is not effective in terms of energy efficiency and reliability (due to the large leakage currents in transmission gate logic topology). 28T design is the best in reliability perspective (in terms of reduced over shoots, full logic swing and reduced glitch duration etc.) and 22T design to be energy efficient option. It has been demonstrated in this paper that TFET’s steep slope characteristics enable the 24T design to have similar reliability characteristics like 28T design and energy efficiency like 22T design. TFET-based 22T design has [Formula: see text]91% smaller energy delay product (EDP) and [Formula: see text]84.4% less power delay product (PDP) in comparison to the low threshold voltage (LVT) FinFET 22T design at 0.2[Formula: see text]V VDD.


Author(s):  
Guy Even ◽  
Moti Medina
Keyword(s):  

2011 ◽  
Author(s):  
B. Smitha Shekar ◽  
M. Sudhakar Pillai ◽  
G. Narendra Kumar

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Sign in / Sign up

Export Citation Format

Share Document