A sublinear algorithm for barrier-certificate-based data-driven model validation of dynamical systems

Author(s):  
Shuo Han ◽  
Ufuk Topcu ◽  
George J. Pappas
Author(s):  
Ashutosh Simha ◽  
Suryansh Sharma ◽  
Sujay Narayana ◽  
R. Venkatesh Prasad

Author(s):  
Patrick Gelß ◽  
Stefan Klus ◽  
Jens Eisert ◽  
Christof Schütte

A key task in the field of modeling and analyzing nonlinear dynamical systems is the recovery of unknown governing equations from measurement data only. There is a wide range of application areas for this important instance of system identification, ranging from industrial engineering and acoustic signal processing to stock market models. In order to find appropriate representations of underlying dynamical systems, various data-driven methods have been proposed by different communities. However, if the given data sets are high-dimensional, then these methods typically suffer from the curse of dimensionality. To significantly reduce the computational costs and storage consumption, we propose the method multidimensional approximation of nonlinear dynamical systems (MANDy) which combines data-driven methods with tensor network decompositions. The efficiency of the introduced approach will be illustrated with the aid of several high-dimensional nonlinear dynamical systems.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Chandrachur Bhattacharya ◽  
Asok Ray

Abstract Chaotic dynamical systems are essentially nonlinear and are highly sensitive to variations in initial conditions and process parameters. Chaos may appear both in natural (e.g., heartbeat rhythms and weather fluctuations) and human-engineered (e.g., thermo-fluid, urban traffic, and stock market) systems. For prediction and control of such systems, it is often necessary to be able to distinguish between non-chaotic and chaotic behavior; several methods exist to detect the presence (or absence) of chaos, specially in noisy signals. A dynamical system may exhibit multiple chaotic regimes, and apparently, there exist no methods, reported in open literature, to classify these regimes individually. This paper demonstrates an application of standard hidden Markov modeling (HMM), which is a commonly used supervised method, as a technique to classify multiple regimes from a time series of dynamical systems, where classified regimes could be chaotic or non-chaotic. The proposed HMM-based method of regime classification has been tested using numerical data obtained from several well-known chaotic dynamical systems (e.g., Hénon, forced Duffing, Rössler, and Lorenz attractor). It is apparently well-suited to serve as a bench mark for the development of alternative data-driven methods to enhance the performance (e.g., accuracy and computational speed) of regime classification in chaotic dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document