Hybrid MLP-PSO-based Technique to Predict Process Parameters and Alloying Compositions in ADI for Sustainable Manufacturing

Author(s):  
Ravindra V. Savangouder ◽  
Jagdish C. Patra ◽  
Suresh Palanisamy
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3909 ◽  
Author(s):  
Luis M. Alves ◽  
Rafael M. Afonso ◽  
Frederico L.R. Silva ◽  
Paulo A.F. Martins

This paper is built upon the deformation-assisted joining of sheets to tubes, away from the tube ends, by means of a new process developed by the authors. The process is based on mechanical joining by means of form-fit joints that are obtained by annular squeezing (compression) of the sheet surfaces adjacent to the tubes. The concept is different from the fixing of sheets to tubes by applying direct loading on the tubes, as is currently done in existing deformation-assisted joining solutions. The process is carried out at room temperature and its development is a contribution towards ecological and sustainable manufacturing practices due to savings in material and energy consumption and to easier end-of-life disassembly and recycling when compared to alternative processes based on fastening, riveting, welding and adhesive bonding. The paper is focused on the main process parameters and special emphasis is put on sheet thickness, squeezing depth, and cross-section recess length of the punches. The presentation is supported by experimentation and finite element modelling, and results show that appropriate process parameters should ensure a compromise between the geometry of the mechanical interlocking and the pull-out strength of the new sheet–tube connections.


The present work analyses MIG in terms of strength and consumption of energy during joining of similar AISI 1018 Mild Steel plates. Sustainable manufacturing is the creation of various manufactured products that generally use different processes that will minimize negative impact on environment, conserve natural resources and energy, are also safe for the employees, consumers and communities as well as economically sound. Sustainable manufacturing highlights on the necessity of an energy effective process that optimize consumption of energy. AISI 1018 mild steel is extensively used in automotive industries for pins, worms, dowels gears, non-critical tool components etc. Main important output responses are Tensile Strength and energy consumption during MIG Welding Process by taking Current, Travel Speed and Voltage as effective input variables. The main objective is to optimize energy consumption as well as tensile strength also determination of main influential process parameters on energy Consumption and tensile strength by using Taguchi Method. Contour plot has been also shown.


Author(s):  
John Victor Christy ◽  
Abdel-Hamid I. Mourad ◽  
Ramanathan Arunachalam

Abstract This work focusses on the production of sustainable metal metrics composites MMCs. The scrap aluminum alloy wheel (SAAW) was used as a metrics and alumina is used as a reinforcement. The process parameters (namely squeeze pressure and time, die preheating temperature and stirrer speed) were optimized using Taguchi method to produce the alumina reinforced-aluminum matrix composites (AMCs). These stir-casted composites were characterized based on their hardness, tensile and compression strengths and wear/tribological properties. The results showed that addition of alumina to aluminum matrix has improved the mechanical and tribological performance. From, Taguchi analysis the optimized 9 approaches (L1 to L9) were obtained and, L5 and L6 methods showed optimum mechanical properties with 100 MPa squeeze pressure, 30 to 40 sec squeeze time, 250 to 350°C die preheating temperature and 450 to 525 rpm stirrer speed process parameters. It was found that properties are process parameters dependent. The produced AMCs have many potential industrial applications including applications in piping industry.


2021 ◽  
Vol 8 ◽  
Author(s):  
Séverine A. E. Boyer ◽  
Lucie Jandet ◽  
Alain Burr

Ceramic is among the complicated materials to use in the design of fine objects. Complex shapes without any major defect are not easy to produce. In most of the cases, the production of ceramic parts is the results of three steps. Firstly, the “sculpture” of the raw piece by adding raw materials to lead to the final object. Secondly, the “drying” and finally the “high temperature oven-dry” of the dried raw object to transform the granular dough into a nice consistent compact material. Exploiting the special characteristics of ceramic is not only a thing of the past. Nowadays new possibilities, i.e., shapes and styles, can be offered in the use of ceramics, and especially where it concerns the application of the Additive Manufacturing (AM) concept. The combination of Computer Aided Design (CAD) to AM opens a completely new means of finding novel ways of processing final objects. By choosing to use kaolin clay without any chemical additions (or improvers) as “a model material,” the ability to produce controlled structures with freedom in design by additive deposition modeling is exposed. Discussions relate to the concomitant control of the process parameters, the kaolin hydration and the complexity of printed structures. The optimization of process parameters (nozzle speed, layer thickness, wall thickness) were defined with the calibration of the material flow. Both windows adjusting water content in dough (%wt) and imposing pressure in the tank of the 3D printer have been defined accordingly. The role of layer impression support was also found to be important. This study credits to use the state-of-the art technique (3D printing) to explore sustainable manufacturing of potteries.


Author(s):  
Haoqi Wang ◽  
Xu Zhang ◽  
Chao Liang ◽  
Qing Zhang

For sustainable manufacturing, energy consumption, air and waste emission, and environmental impact of product and process are analyzed in product and process development. The sustainability assessment is realized based on complete, structured information models of product, process and manufacturing resources, which are proposed in this paper. After analyzing the process of unit assembly and machining, two information models of unit assembly operation and unit machining process are given in UML representation. Besides the basic process parameters, the sustainable manufacturing related information such material consumption, energy usage, wastes and greenhouse air emission are also considered in the models. The manufacturing resource mode is core model to relate process and sustainability indicators. The resource information model of machining tool is proposed with process parameters and unit data of indictors. A sustainability assessment process is given in the end.


Sign in / Sign up

Export Citation Format

Share Document