Research on Deep Learning-based AI Information Extraction Methods of Substation Engineering Design

Author(s):  
Ying Chen ◽  
Wei Jiang ◽  
Yali Wang ◽  
Junhui Hu ◽  
Lan Guan ◽  
...  
2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


2021 ◽  
Vol 13 (13) ◽  
pp. 2524
Author(s):  
Ziyi Chen ◽  
Dilong Li ◽  
Wentao Fan ◽  
Haiyan Guan ◽  
Cheng Wang ◽  
...  

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.


2019 ◽  
Vol 11 ◽  
pp. 184797901989077 ◽  
Author(s):  
Kiran Adnan ◽  
Rehan Akbar

During the recent era of big data, a huge volume of unstructured data are being produced in various forms of audio, video, images, text, and animation. Effective use of these unstructured big data is a laborious and tedious task. Information extraction (IE) systems help to extract useful information from this large variety of unstructured data. Several techniques and methods have been presented for IE from unstructured data. However, numerous studies conducted on IE from a variety of unstructured data are limited to single data types such as text, image, audio, or video. This article reviews the existing IE techniques along with its subtasks, limitations, and challenges for the variety of unstructured data highlighting the impact of unstructured big data on IE techniques. To the best of our knowledge, there is no comprehensive study conducted to investigate the limitations of existing IE techniques for the variety of unstructured big data. The objective of the structured review presented in this article is twofold. First, it presents the overview of IE techniques from a variety of unstructured data such as text, image, audio, and video at one platform. Second, it investigates the limitations of these existing IE techniques due to the heterogeneity, dimensionality, and volume of unstructured big data. The review finds that advanced techniques for IE, particularly for multifaceted unstructured big data sets, are the utmost requirement of the organizations to manage big data and derive strategic information. Further, potential solutions are also presented to improve the unstructured big data IE systems for future research. These solutions will help to increase the efficiency and effectiveness of the data analytics process in terms of context-aware analytics systems, data-driven decision-making, and knowledge management.


2020 ◽  
Vol 10 (20) ◽  
pp. 7068
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Recent convolutional neural network (CNN) models in image processing can be used as feature-extraction methods to achieve high accuracy as well as automatic processing in bearing fault diagnosis. The combination of deep learning methods with appropriate signal representation techniques has proven its efficiency compared with traditional algorithms. Vital electrical machines require a strict monitoring system, and the accuracy of these machines’ monitoring systems takes precedence over any other factors. In this paper, we propose a new method for diagnosing bearing faults under variable shaft speeds using acoustic emission (AE) signals. Our proposed method predicts not only bearing fault types but also the degradation level of bearings. In the proposed technique, AE signals acquired from bearings are represented by spectrograms to obtain as much information as possible in the time–frequency domain. Feature extraction and classification processes are performed by deep learning using EfficientNet and a stochastic line-search optimizer. According to our various experiments, the proposed method can provide high accuracy and robustness under noisy environments compared with existing AE-based bearing fault diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document