3D analysis of inspection method of opposite side defect in steel using AC square wave magnetic field with DC bias taking account of minor loop

Author(s):  
S. Yoshioka ◽  
R. Naganoma ◽  
E. Kuboyama ◽  
Y. Gotoh
2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2013 ◽  
Vol 718-720 ◽  
pp. 1000-1005
Author(s):  
Li Jian Yang ◽  
Sen Lin Zhang ◽  
Song Wei Gao

In order to solve the need of the oil and gas pipeline defect quantification in the real-time online defecting, magnetic flux leakage inspection method was applied to oil and gas pipeline inspection. According to the basic theory of the electromagnetic field, finite element solution of electromagnetic field and ANSYS electromagnetic field calculation theory, using the function of ANSYS 's simulation and calculation for magnetic field, three-dimensional finite element model of the oil and gas pipeline defect was built up. Through simulating, the relationship between defect signal and defect size was found, the optimal distance of the hall sensor lift-off value was verified, the best magnetization of leakage magnetic field was discussed, and various factors to influence the magnetic flux leakage signal is analyzed.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


2017 ◽  
Vol 123 ◽  
pp. 597-602 ◽  
Author(s):  
A. Formisano ◽  
R. Albanese ◽  
G. Ambrosino ◽  
M. de Magistris ◽  
P. De Vries ◽  
...  

2019 ◽  
Vol 12 (01) ◽  
pp. 1850098 ◽  
Author(s):  
Li Lv ◽  
Xi Yao ◽  
Lin Gan ◽  
Xiaoli Zhang ◽  
Jian-Ping Zhou

Magnetoelectric anisotropy was researched in a disc laminate composite. The magnetoelectric coefficient exhibits a cosine characteristic with the angle between the direction of dc bias magnetic field [Formula: see text] and small ac sine magnetic signal [Formula: see text], no matter how [Formula: see text] rotates. Correspondingly, there are only two values of phase shift when the angle varies from 0 to 360[Formula: see text]. These two phase shifts only depend on [Formula: see text] mapping on [Formula: see text], i.e., sign of dot product of [Formula: see text] and [Formula: see text] [Sgn([Formula: see text])], implying that [Formula: see text]cos[Formula: see text] produces charge through the magnetoelectric effect. Then, a simple device was proposed to detect the magnitude and direction of ac magnetic field.


2017 ◽  
Vol 8 ◽  
pp. 2515-2520 ◽  
Author(s):  
Natália Tomašovičová ◽  
Jozef Kováč ◽  
Veronika Gdovinová ◽  
Nándor Éber ◽  
Tibor Tóth-Katona ◽  
...  

We report on experimental studies focusing on the dynamic ac magnetic susceptibility of a ferronematic. It has been shown recently, that in the isotropic phase of a ferronematic, a weak dc bias magnetic field of a few oersteds increases the ac magnetic susceptibility. This increment vanishes irreversibly if the substance is cooled down to the nematic phase, but can be reinduced by applying the dc bias field again in the isotropic phase [Tomašovičová, N. et al. Soft Matter 2016, 12, 5780–5786]. The effect has no analogue in the neat host liquid crystal. Here, we demonstrate that by doubling the concentration of the magnetic nanoparticles, the range of the dc bias magnetic field to which the ferronematic is sensitive without saturation can be increased by about two orders of magnitude. This finding paves a way to application possibilities, such as low magnetic field sensors, or basic logical elements for information storage.


Sign in / Sign up

Export Citation Format

Share Document