Optimal placement of additional switch in the photovoltaic single-phase grid-connected transformerless full bridge inverter for reducing common mode leakage current

Author(s):  
Ramin Rahimi ◽  
Ehsan Afshari ◽  
Babak Farhangi ◽  
Shahrokh Farhangi
Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1440 ◽  
Author(s):  
Mehrdad Mahmoudian ◽  
Eduardo M. G. Rodrigues ◽  
Edris Pouresmaeil

Transformerless inverters are the economic choice as power interfaces between photovoltaic (PV) renewable sources and the power grid. Without galvanic isolation and adequate power convert design, single-phase grid connected inverters may have limited performance due to the presence of a significant common mode ground current by creating safety issues and enhancing the negative impact of harmonics in the grid current. This paper proposes an extended H6 transformerless inverter that uses an additional power switch (H7) to improve common mode leakage current mitigation in a single-phase utility grid. The switch with a diode in series connection aims to make an effective clamp of common mode voltage at the DC link midpoint. The principles of operation of the proposed structure with bipolar sinusoidal pulse width modulation (SPWM) is presented and formulated. Laboratory tests’ performance is detailed and evaluated in comparison with well-known single-phase transformer-less topologies in terms of power conversion efficiency, total harmonic distortion (THD) level, and circuit components number. The studied topology performance evaluation is completed with the inclusion of reactive power compensation functionality verified by a low-power laboratory implementation with 98.02% efficiency and 30.3 mA for the leakage current.


2021 ◽  
Vol 19 ◽  
pp. 137-142
Author(s):  
K. Karam ◽  
◽  
M. Badawi El Najjar ◽  
M. El Hassan

The pervasion of transformerless grid connected photovoltaic (PV) inverters has triggered the concerns of many researchers since it can induce power quality problems. In these types of applications, the generation of common mode (CM) leakage current is one of the major factors that affects the reliability of the overall design. In single-phase systems, the concept of the common ground between the PV negative terminal and the neutral point of the grid is the only topology that “totally” cancels this CM noise. However, none of the existing three-phase inverter techniques is able to totally remove it. Therefore, this paper proposes a three-phase PV inverter based on the concept applied in the single-phase system in order to achieve, for the first time, a zero CM noise in three-phase grid-connected PV applications. The proposed inverter is simulated with a PV array, appropriate modulation technique, corresponding inverter controller, and a three-phase Y-connected alternating current (AC) grid voltage. The simulation of the overall system is done using Matlab/Simulink software. As compared with results of existing three-phase topologies, this is the only three-phase transformerless PV inverter technique that offers generation of multilevel output, total elimination of leakage current flow, simple inverter structure, and uncomplicated modulation technique.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1296 ◽  
Author(s):  
Li ◽  
Wang ◽  
San ◽  
Guo

For the grid-connected photovoltaic inverters, the switching-frequency common-mode voltage brings the leakage current, which should be eliminated. So far, many kinds of single-phase inverters have been published for this purpose, but most of them are the conventional voltage-type ones, which have the disadvantages of poor reliability due to the DC-link electrolytic capacitor and the risk of short-through of the bridge switches. To solve this technical issue, a novel current source inverter with AC-side clamping is proposed to mitigate the switching-frequency common-mode voltage. Meanwhile, a novel modulation method is proposed for the new single-phase inverter to achieve low-frequency operation of the main switches, which reduces the switching losses. Finally, the proposed method is implemented on the TMS320F28335DSP + XC6SLX9FPGA digital hardware platform. Also, the performance comparisons are done with the traditional solution. The results prove the proposed solution.


2021 ◽  
Vol 23 (2) ◽  
pp. 123-130
Author(s):  
Baoge Zhang ◽  
Deyu Hong

An improved single-phase unisolated grid-connected photovoltaic inverter topology is proposed to solve the common mode leakage current problem of unisolated grid-connected photovoltaic inverters. By analyzing the topology structure and voltage clamping principle of the improved inverter, the topology can maintain the same low input voltage as the full-bridge inverter, and ensure that the common-mode voltage in the continuation mode is clamped to the midpoint voltage of the bus, so as to effectively reduce the common-mode leakage current caused by the common-mode voltage suspension in the continuation mode. Moreover, the common-mode leakage current of the improved topology is smaller than that of the traditional H6-2D topology at similar conversion efficiency. The simulation results on MATLAB /Simulink platform show that the topology is feasible and effective.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Haiyan Cao

Transformerless photovoltaic (PV) power system is very promising due to its low cost, small size, and high efficiency. One of its most important issues is how to prevent the common mode leakage current. In order to solve the problem, a new inverter is proposed in this paper. The system common mode model is established, and the four operation modes of the inverter are analyzed. It reveals that the common mode voltage can be kept constant, and consequently the leakage current can be suppressed. Finally, the experimental tests are conducted. The experimental results verify the effectiveness of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document