An autonomous navigation scheme for UAV in approach phase

Author(s):  
Zhuoning Dong ◽  
Wenbin Li ◽  
Yanxing Zhou
2016 ◽  
Vol 70 (3) ◽  
pp. 505-526 ◽  
Author(s):  
Xiaolin Ning ◽  
Zhuo Li ◽  
Yuqing Yang ◽  
Jiancheng Fang ◽  
Gang Liu

A Celestial Navigation System (CNS) is a feasible and economical autonomous navigation system for deep-space probes. Ephemeris errors have a great influence on the performance of CNSs during the Mars approach phase, but there are few research studies on this problem. In this paper, the analysis shows that the ephemeris error of Mars is slowly-varying, while the ephemeris error of Phobos and Deimos is periodical. The influence of the ephemeris errors of Mars and its satellites is analysed in relation to both the Sun-centred frame and the Mars-centred frame. The simulations show that the position error of a probe relative to the Sun caused by the Mars ephemeris error is almost equal to the ephemeris error itself, that the velocity error is affected slightly, and that the position and velocity relative to Mars are hardly affected. The navigation result of a Mars probe is also greatly affected by the quantities and periodicities of the ephemeris errors of Phobos and Deimos, especially that of Deimos.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3083
Author(s):  
Donghui Lyu ◽  
Jiongqi Wang ◽  
Zhangming He ◽  
Yuyun Chen ◽  
Bowen Hou

As a new information provider of autonomous navigation, the on-orbit landmark observation offers a new means to improve the accuracy of autonomous positioning and attitude determination. A novel autonomous navigation method based on the landmark observation and the inertial system is designed to achieve the high-accuracy estimation of the missile platform state. In the proposed method, the navigation scheme is constructed first. The implicit observation equation about the deviation of the inertial system output is derived and the Kalman filter is applied to estimate the missile platform state. Moreover, the physical observability of the landmark and the mathematical observability of the navigation system are analyzed. Finally, advantages of the proposed autonomous navigation method are demonstrated through simulations compared with the traditional celestial-inertial navigation system and the deeply integrated celestial-inertial navigation system.


2017 ◽  
Vol 71 (1) ◽  
pp. 21-43 ◽  
Author(s):  
Yangwei Ou ◽  
Hongbo Zhang

This paper concentrates on designing an autonomous navigation scheme for Mars exploration. In this scheme, formation flying spacecraft are used to realise absolute orbit determination when orbiting around Mars. Inertial Line-Of-Sight (LOS) vectors from “deputy” spacecraft to the “chief” are measured using radio cross-link, optical devices and attitude sensors. Since the system's observability is closely related to the navigation performance, an analytical approach is proposed to optimise the observability. In this method, the gravity gradient tensor difference is chosen as the performance index to optimise two navigation scenarios. When there is one deputy flying around the chief, optimal parameters are obtained by solving the constrained optimisation problem. When a second deputy is added into the formation, the optimal configuration is also obtained. These results reveal that the observability is mainly determined by the magnitude of the in-track and cross-track distances in the configuration. An Extended Kalman Filter (EKF) is used to estimate the position and velocity of the chief. The results of a navigation simulation confirms that adding more deputies can significantly improve the navigational performance.


2012 ◽  
Vol 4 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Chimpalthradi R. Ashokkumar

Unmanned micro air vehicle control in pitch plane is quite challenging. In order to develop an autonomous navigation scheme in pitch plane, longitudinal autopilot design for flight control modes such as take-off, landing, climb, altitude hold, etc., have been actively pursued in the literature. The aircraft trajectories that a controller generates are important to understand these modes. In this paper, it is shown that a multiple input system can offer infinitely a large number of trajectory options that can be used to develop various flight control modes and plan an MAV navigation scheme. Accordingly, the controllers are determined. An MAV example is considered and trajectory options for climb and descend modes are illustrated.


Sign in / Sign up

Export Citation Format

Share Document